cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231855 T(n,k)=Number of nXk 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).

Original entry on oeis.org

1, 1, 3, 3, 8, 9, 8, 34, 55, 27, 21, 144, 656, 377, 81, 55, 612, 7339, 12404, 2584, 243, 144, 2613, 85288, 360966, 234336, 17711, 729, 377, 11159, 991167, 11149456, 17726611, 4426924, 121393, 2187, 987, 47675, 11529929, 342945563, 1454768048, 870478586
Offset: 1

Views

Author

R. H. Hardin, Nov 14 2013

Keywords

Comments

Table starts
....1......1..........3.............8...............21..................55
....3......8.........34...........144..............612................2613
....9.....55........656..........7339............85288..............991167
...27....377......12404........360966.........11149456...........342945563
...81...2584.....234336......17726611.......1454768048........118292347982
..243..17711....4426924.....870478586.....189801034186......40798265169064
..729.121393...83630516...42745416641...24762957054535...14071005227913420
.2187.832040.1579892344.2099041399895.3230773305296573.4852980371902817445

Examples

			Some solutions for n=3 k=4
..0..0..0..1....0..0..2..1....0..0..0..0....0..0..0..1....0..0..1..0
..0..2..2..2....1..2..1..1....1..1..1..1....0..0..2..2....0..2..0..1
..2..0..0..0....1..1..2..2....1..2..0..0....1..0..0..0....2..2..2..2
		

Crossrefs

Column 1 is A000244(n-1)
Column 2 is A033890(n-1)
Row 1 is A001906(n-1)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 7*a(n-1) -a(n-2)
k=3: a(n) = 21*a(n-1) -41*a(n-2) +22*a(n-3) for n>4
k=4: [order 9] for n>10
k=5: [order 21] for n>22
k=6: [order 52] for n>54
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) for n>3
n=2: [order 8] for n>9
n=3: [order 35] for n>39