A231855 T(n,k)=Number of nXk 0..2 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).
1, 1, 3, 3, 8, 9, 8, 34, 55, 27, 21, 144, 656, 377, 81, 55, 612, 7339, 12404, 2584, 243, 144, 2613, 85288, 360966, 234336, 17711, 729, 377, 11159, 991167, 11149456, 17726611, 4426924, 121393, 2187, 987, 47675, 11529929, 342945563, 1454768048, 870478586
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..0..0..1....0..0..2..1....0..0..0..0....0..0..0..1....0..0..1..0 ..0..2..2..2....1..2..1..1....1..1..1..1....0..0..2..2....0..2..0..1 ..2..0..0..0....1..1..2..2....1..2..0..0....1..0..0..0....2..2..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..161
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 7*a(n-1) -a(n-2)
k=3: a(n) = 21*a(n-1) -41*a(n-2) +22*a(n-3) for n>4
k=4: [order 9] for n>10
k=5: [order 21] for n>22
k=6: [order 52] for n>54
Empirical for row n:
n=1: a(n) = 3*a(n-1) -a(n-2) for n>3
n=2: [order 8] for n>9
n=3: [order 35] for n>39
Comments