cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A231917 Numbers n such that 16*n^2 + 10*n + 1 divides 2^n - 1.

Original entry on oeis.org

0, 11, 75, 156, 179, 215, 216, 239, 371, 431, 504, 551, 564, 624, 651, 711, 936, 999, 1040, 1076, 1296, 1304, 1416, 1680, 1884, 1911, 2079, 2324, 2615, 2696, 3176, 3224, 3236, 3500, 3696, 3780, 3879, 4040, 4044, 4215, 4340, 4368, 4431, 4599, 4604, 4859, 5019
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 15 2013

Keywords

Comments

The prime numbers of this sequence are in A231916.

Crossrefs

Subsequence of A081858. Supersequence of A231916.

Programs

  • Mathematica
    Prepend[Select[Range[5019], PowerMod[2, #, 16*#^2 + 10*# + 1] == 1 &], 0]

A231918 Primes p such that (2*p + 1)*(8*p + 1)*(18*p + 1) divides 2^p - 1.

Original entry on oeis.org

50411, 116411, 495611, 705119, 730451, 816839, 1074851, 1851851, 2263619, 2827679, 3355991, 3979511, 4513979, 5108639, 5347211, 5654651, 6098759, 6673391, 7153199, 7862579, 8497451, 8754131, 10763939, 10852739, 11649611, 12523499, 12561551, 12694991
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 15 2013

Keywords

Crossrefs

Subsequence of A231916.

Programs

  • Mathematica
    lst = {}; Do[If[PrimeQ[p] && PowerMod[2, p, 288*p^3 + 196*p^2 + 28*p + 1] == 1, AppendTo[lst, p]], {p, 12694991}]; lst
Showing 1-2 of 2 results.