A231958 Numbers n dividing the Lucas sequence u(n) defined by u(i) = 2*u(i-1) - 5*u(i-2) with initial conditions u(0)=0, u(1)=1.
1, 2, 4, 8, 12, 16, 24, 32, 36, 48, 56, 64, 72, 96, 108, 112, 128, 132, 144, 156, 168, 192, 216, 224, 256, 264, 272, 288, 312, 324, 336, 384, 392, 396, 432, 448, 468, 496, 504, 512, 528, 544, 552, 576, 624, 648, 672, 768, 784, 792, 816, 864, 896, 936, 972
Offset: 1
Links
- C. Smyth, The Terms in Lucas Sequences Divisible by their Indices, Journal of Integer Sequences, Vol.13 (2010), Article 10.2.4.
Programs
-
Mathematica
nn = 2000; s = LinearRecurrence[{2, -5}, {1, 2}, nn]; t = {}; Do[If[Mod[s[[n]], n] == 0, AppendTo[t, n]], {n, nn}]; t (* T. D. Noe, Nov 20 2013 *)
Comments