A231984 Decimal expansion of the solid angle (in deg^2) of a spherical square having sides of one degree.
9, 9, 9, 9, 7, 4, 6, 1, 6, 4, 3, 9, 2, 7, 8, 6, 5, 4, 3, 2, 1, 9, 8, 5, 0, 9, 4, 7, 8, 4, 9, 6, 8, 2, 2, 5, 5, 1, 7, 9, 5, 9, 1, 5, 2, 4, 1, 8, 5, 7, 6, 4, 5, 2, 7, 4, 0, 6, 4, 6, 7, 2, 8, 4, 2, 8, 1, 4, 8, 7, 7, 7, 6, 0, 7, 1, 7, 3, 3, 6, 5, 8, 1, 8, 1, 5, 1, 7, 6, 0, 5, 8, 9, 6, 7, 7, 1, 4, 7, 6, 7, 1, 4, 5, 7
Offset: 0
Examples
0.9999746164392786543219850947849682255179591524185764527406467...
References
- G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry, Princeton University Press, 2012, ISBN 978-0691148922.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Wikipedia, Solid angle, Section 3.3 (Pyramid)
- Wikipedia, Square degree
- Wikipedia, Steradian
Crossrefs
Programs
-
Mathematica
RealDigits[4*ArcSin[Sin[Pi/360]^2](180/Pi)^2,10,120][[1]] (* Harvey P. Dale, Aug 20 2017 *)
-
PARI
default(realprecision, 120); 4*asin(sin(Pi/360)^2)*(180/Pi)^2 \\ Rick L. Shepherd, Jan 28 2014
Formula
4*arcsin(sin(R/2)sin(S/2))*(180/Pi)^2, where R = S = Pi/180.
Comments