A231987 Decimal expansion of the side length (in radians) of the spherical square whose solid angle is exactly one steradian.
1, 0, 4, 1, 1, 9, 1, 8, 0, 3, 6, 0, 6, 8, 7, 3, 3, 4, 0, 2, 3, 4, 6, 0, 7, 5, 3, 3, 5, 9, 2, 5, 6, 8, 7, 8, 8, 9, 0, 0, 6, 9, 6, 6, 7, 6, 0, 0, 6, 0, 8, 7, 1, 3, 4, 9, 1, 5, 2, 3, 0, 2, 8, 1, 3, 1, 2, 9, 9, 7, 1, 9, 7, 0, 4, 8, 2, 2, 3, 8, 5, 8, 9, 2, 8, 9, 5, 5, 5, 8, 8, 7, 1, 8, 8, 6, 4, 4, 3, 0, 7, 2, 7, 5, 9
Offset: 1
Examples
1.041191803606873340234607533592568788900696676006087134915230281312997...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Wikipedia, Solid angle, Section 3.3 (Pyramid).
- Wikipedia, Steradian.
Crossrefs
Programs
-
Mathematica
RealDigits[2*ArcSin[Sqrt[Sin[1/4]]], 10, 120][[1]] (* Amiram Eldar, Jun 06 2023 *)
-
PARI
default(realprecision, 120); 2*asin(sqrt(sin(1/4))) \\ or solve(x = 1, 2, 4*asin((sin(x/2))^2) - 1) \\ least positive solution - Rick L. Shepherd, Jan 28 2014
Formula
Equals 2*arcsin(sqrt(sin(1/4))).
Extensions
Formula and comment corrected by Rick L. Shepherd, Jan 28 2014
Comments