cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232023 T(n,k)=Number of nXk 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

3, 3, 9, 9, 22, 27, 22, 66, 121, 81, 51, 212, 852, 704, 243, 121, 716, 6443, 11517, 4059, 729, 292, 2447, 52680, 196196, 156913, 23422, 2187, 704, 8312, 429976, 3668759, 6129361, 2125749, 135166, 6561, 1691, 28118, 3466702, 66962048, 266779524
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Table starts
.....3.......3..........9............22...............51.................121
.....9......22.........66...........212..............716................2447
....27.....121........852..........6443............52680..............429976
....81.....704......11517........196196..........3668759............66962048
...243....4059.....156913.......6129361........266779524.........11145921002
...729...23422....2125749.....189686855......19227454407.......1843879894941
..2187..135166...28852936....5882557816....1386576216443.....304550219824247
..6561..779977..391447970..182394008292..100026008988909...50342644960736903
.19683.4500958.5311170384.5654881014985.7214505515214571.8320423932674561675

Examples

			Some solutions for n=4 k=4
..0..0..0..0....2..0..0..0....0..0..0..0....2..0..0..1....0..0..0..1
..2..0..0..1....0..2..2..2....2..2..1..2....0..0..0..2....0..0..0..0
..0..0..0..0....0..0..1..2....0..0..0..2....2..0..0..0....2..2..0..0
..1..0..0..0....0..1..1..1....0..0..0..0....2..0..0..0....0..0..1..1
		

Crossrefs

Column 1 is A000244
Row 1 is A202882 for n>1

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 3*a(n-1) +13*a(n-2) +16*a(n-3) +7*a(n-4) +a(n-5)
k=3: [order 7] for n>8
k=4: [order 18] for n>19
k=5: [order 41] for n>42
k=6: [order 79] for n>81
Empirical for row n:
n=1: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) for n>6
n=2: [order 17] for n>18
n=3: [order 61] for n>64