A232047 T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.
2, 2, 4, 4, 7, 8, 7, 15, 21, 16, 12, 34, 80, 65, 32, 21, 79, 318, 446, 200, 64, 37, 184, 1315, 3082, 2477, 616, 128, 65, 426, 5364, 22063, 29974, 13752, 1897, 256, 114, 984, 21680, 153562, 377676, 290672, 76375, 5842, 512, 200, 2274, 87452, 1060850, 4588174
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..1....0..0..0..1....1..0..0..0....0..0..0..0....1..1..0..0 ..1..0..1..1....0..0..1..0....0..0..0..0....1..0..0..0....0..0..1..0 ..0..0..0..1....0..1..0..0....0..1..0..0....1..1..1..0....0..1..0..1 ..1..0..0..0....1..0..0..1....1..0..0..1....1..1..0..0....0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..478
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) +a(n-3)
k=3: a(n) = 4*a(n-1) +9*a(n-2) -a(n-3) -6*a(n-4) for n>5
k=4: [order 8] for n>9
k=5: [order 14] for n>15
k=6: [order 24] for n>26
k=7: [order 44] for n>47
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
n=2: a(n) = 4*a(n-1) -6*a(n-2) +7*a(n-3) -6*a(n-4) +3*a(n-5) -a(n-6) -a(n-7) for n>8
n=3: [order 15] for n>18
n=4: [order 33] for n>36
n=5: [order 78] for n>84
Comments