cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232047 T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

Original entry on oeis.org

2, 2, 4, 4, 7, 8, 7, 15, 21, 16, 12, 34, 80, 65, 32, 21, 79, 318, 446, 200, 64, 37, 184, 1315, 3082, 2477, 616, 128, 65, 426, 5364, 22063, 29974, 13752, 1897, 256, 114, 984, 21680, 153562, 377676, 290672, 76375, 5842, 512, 200, 2274, 87452, 1060850, 4588174
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Table starts
....2.....2........4..........7...........12..............21................37
....4.....7.......15.........34...........79.............184...............426
....8....21.......80........318.........1315............5364.............21680
...16....65......446.......3082........22063..........153562...........1060850
...32...200.....2477......29974.......377676.........4588174..........55505057
...64...616....13752.....290672......6430408.......136134243........2882322121
..128..1897....76375....2821630....109609484......4041385884......149582129861
..256..5842...424115...27382537...1868028342....119990644449.....7766282047395
..512.17991..2355221..265752221..31836538191...3562337669985...403179428472169
.1024.55405.13079032.2579134666.542586883485.105762437152368.20931014633412316

Examples

			Some solutions for n=4 k=4
..0..0..0..1....0..0..0..1....1..0..0..0....0..0..0..0....1..1..0..0
..1..0..1..1....0..0..1..0....0..0..0..0....1..0..0..0....0..0..1..0
..0..0..0..1....0..1..0..0....0..1..0..0....1..1..1..0....0..1..0..1
..1..0..0..0....1..0..0..1....1..0..0..1....1..1..0..0....0..0..1..1
		

Crossrefs

Column 1 is A000079
Column 2 is A218836
Row 1 is A005251(n+2)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +3*a(n-2) +a(n-3)
k=3: a(n) = 4*a(n-1) +9*a(n-2) -a(n-3) -6*a(n-4) for n>5
k=4: [order 8] for n>9
k=5: [order 14] for n>15
k=6: [order 24] for n>26
k=7: [order 44] for n>47
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
n=2: a(n) = 4*a(n-1) -6*a(n-2) +7*a(n-3) -6*a(n-4) +3*a(n-5) -a(n-6) -a(n-7) for n>8
n=3: [order 15] for n>18
n=4: [order 33] for n>36
n=5: [order 78] for n>84