cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A265181 Prime numbers resulting from the concatenation of at least two copies of a cubic number followed by a trailing "1.".

Original entry on oeis.org

881, 27271, 7297291, 133113311, 337533751, 19683196831, 42875428751, 68921689211, 1038231038231, 1574641574641, 2053792053791, 2744274427441, 4218754218751, 6859685968591, 7290007290001, 7297297297291, 106120810612081, 224809122480911, 274400027440001, 280322128032211, 317652331765231, 500021150002111, 812060181206011, 1251251251251251, 1757617576175761, 1968319683196831, 5931959319593191
Offset: 1

Views

Author

Thomas S. Pedigo, Dec 03 2015

Keywords

Comments

Subsequence of A030430 (primes of the form 10n+1). - Michel Marcus, Dec 04 2015
If m is a term then (m-1)/10 is divisible by a cube (A000578) and the resulting quotient, different from 1, is in A076289. - Michel Marcus, Dec 05 2015
Without the "repeated at least twice" constraint, A168147 would be a subsequence. - Michel Marcus, Dec 05 2015

Examples

			8 = 2^3; 881 is prime.
27 = 3^3; 27271 is prime.
		

Crossrefs

Programs

  • Maple
    N:= 20: # to get all terms with at most N digits
    M:= floor((N-1)/2):
    res:= {}:
    for s from 1 to floor(10^(M/3)) do
       x:= s^3;
       m:= 1+ilog10(x);
       for k from 2 to floor((N-1)/m) do
         p:= x*add(10^(1+m*i),i=0..k-1)+1;
         if isprime(p) then res:= res union {p} fi;
       od
    od:
    sort(convert(res,list)); # Robert Israel, Jan 13 2016
  • Mathematica
    Take[Sort@ Flatten[Select[#, PrimeQ] & /@ Table[FromDigits@ Append[Flatten@ IntegerDigits@ Table[n^3, {#}], 1] & /@ Range[2, 20], {n, 1, 300}] /. {} -> Nothing], 27] (* Michael De Vlieger, Jan 05 2016 *)
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A265181_gen(): # generator of terms
        return filter(isprime,(int(str(k**3)*2)*10+1 for k in count(1)))
    A265181_list = list(islice(A265181_gen(),20)) # Chai Wah Wu, Feb 20 2023
Showing 1-1 of 1 results.