A232076 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.
3, 15, 11, 46, 87, 34, 161, 520, 602, 111, 601, 3681, 6624, 3985, 361, 2208, 26587, 91636, 82996, 26713, 1172, 8053, 189404, 1313477, 2265691, 1043172, 178484, 3809, 29415, 1348429, 18480458, 64298979, 56126173, 13105012, 1193537, 12377, 107534
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..0..1..1..0....0..0..1..1..1....0..0..0..1..1....0..1..0..0..1 ..0..0..0..0..0....1..1..0..0..0....0..0..0..1..0....1..0..0..1..1 ..0..0..1..1..1....1..0..0..0..0....0..0..0..0..0....1..1..0..0..1 ..1..1..1..1..1....0..0..1..1..1....1..1..1..1..0....1..0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Crossrefs
Column 1 is A180762(n+1)
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=2: a(n) = 5*a(n-1) +11*a(n-2) +2*a(n-3) -8*a(n-5)
k=3: [order 10]
k=4: [order 30]
k=5: [order 50]
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4)
n=2: [order 8]
n=3: [order 20]
n=4: [order 54]
Comments