cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232076 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal, diagonal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

3, 15, 11, 46, 87, 34, 161, 520, 602, 111, 601, 3681, 6624, 3985, 361, 2208, 26587, 91636, 82996, 26713, 1172, 8053, 189404, 1313477, 2265691, 1043172, 178484, 3809, 29415, 1348429, 18480458, 64298979, 56126173, 13105012, 1193537, 12377, 107534
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2013

Keywords

Comments

Table starts
......3........15...........46.............161................601
.....11........87..........520............3681..............26587
.....34.......602.........6624...........91636............1313477
....111......3985........82996.........2265691...........64298979
....361.....26713......1043172........56126173.........3154769585
...1172....178484.....13105012......1389867384.......154723539035
...3809...1193537....164650280.....34420057373......7588839921175
..12377...7979619...2068621706....852404560481....372212311236497
..40218..53352090..25989674166..21109624812630..18256039956940439
.130687.356709629.326528021922.522775448585677.895410839428587845

Examples

			Some solutions for n=3 k=4
..0..0..1..1..0....0..0..1..1..1....0..0..0..1..1....0..1..0..0..1
..0..0..0..0..0....1..1..0..0..0....0..0..0..1..0....1..0..0..1..1
..0..0..1..1..1....1..0..0..0..0....0..0..0..0..0....1..1..0..0..1
..1..1..1..1..1....0..0..1..1..1....1..1..1..1..0....1..0..0..1..0
		

Crossrefs

Column 1 is A180762(n+1)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=2: a(n) = 5*a(n-1) +11*a(n-2) +2*a(n-3) -8*a(n-5)
k=3: [order 10]
k=4: [order 30]
k=5: [order 50]
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4)
n=2: [order 8]
n=3: [order 20]
n=4: [order 54]