A232093 Position of 7^n among 7-smooth numbers (A002473).
1, 7, 30, 87, 202, 403, 726, 1214, 1911, 2874, 4158, 5832, 7968, 10640, 13933, 17937, 22747, 28464, 35195, 43054, 52162, 62644, 74630, 88257, 103671, 121020, 140462, 162155, 186267, 212973, 242453, 274894, 310483, 349420, 391909, 438161, 488388, 542814, 601667, 665181, 733594, 807154, 886109, 970720, 1061252, 1157972, 1261156, 1371084, 1488047, 1612341
Offset: 0
Keywords
Examples
A002473(a(1)) = A002473(7) = 7. A002473(a(2)) = A002473(30) = 49 = 7^2. A002473(a(200)) = A002473(411921660) = 7^200.
Links
- Zak Seidov, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
ss7 = {}; Do[m = 7^n; s = Sum[1 + Floor[Log[2, 7^(n - k)/5^i/3^j]], {k, 0, n}, {i, 0, Log[5, 7^(n - k)]}, {j, 0, Log[3, 7^(n - k)/5^i]}]; AppendTo[ss7, {n, s}], {n, 0, 50}]; ss7
Formula
a(n) ~ c * n^4, where c = log(7)^3/(24*log(2)*log(3)*log(5)) = 0.250503020417439... - Vaclav Kotesovec and Amiram Eldar, Sep 22 2024
Comments