cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A232096 a(n) = largest m such that m! divides 1+2+...+n; a(n) = A055881(A000217(n)).

Original entry on oeis.org

1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 5, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 2, 1, 1, 2, 4, 1, 1, 3, 3, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 4, 4, 1, 1, 3, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 4, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 2, 1, 1, 2, 5, 1, 1, 3, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Crossrefs

A042963 gives the positions of ones and A014601 the positions of larger terms.

Programs

Formula

a(n) = A055881(A000217(n)).
a(n) = A231719(A226061(n+1)). [Not a practical way to compute this sequence, but follows from the definitions]

A231717 After a(0)=0, a(n) = A231713(A219666(n),A219666(n-1)).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 1, 6, 3, 3, 3, 2, 1, 6, 2, 3, 1, 3, 5, 3, 1, 3, 6, 2, 2, 3, 10, 3, 3, 3, 2, 1, 6, 2, 3, 1, 3, 5, 3, 1, 3, 6, 2, 1, 3, 5, 5, 3, 10, 2, 3, 1, 3, 5, 3, 1, 3, 6, 2, 1, 2, 4, 2, 4, 5, 3, 3, 9, 3, 1, 3, 6, 2, 1, 2, 4, 2, 4, 5, 3, 2, 4, 3, 10
Offset: 0

Views

Author

Antti Karttunen, Nov 12 2013

Keywords

Comments

For all n, a(A226061(n+1)) = A232095(n). This works because at the positions given by each x=A226061(n+1), it holds that A219666(x) = (n+1)!-1, which has a factorial base representation (A007623) of (n,n-1,n-2,...,3,2,1) whose digit sum (A034968) is the n-th triangular number, A000217(n). This in turn is always a new record as at those points, in each significant digit position so far employed, a maximal digit value (for factorial number system) is used, and thus the preceding term, A219666(x-1) cannot have any larger digits in its factorial base representation, and so the differences between their digits (in matching positions) are all nonnegative.

Crossrefs

A231718 gives the positions of ones.
Cf. also A230410, A231719, A232095.

Programs

Formula

a(0)=0, and for n>=1, a(n) = A231713(A219666(n),A219666(n-1)).

A232094 a(n) = A060130(A000217(n)); number of nonzero digits in factorial base representation (A007623) of 0+1+2+...+n.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 3, 2, 2, 4, 3, 2, 2, 3, 4, 1, 3, 5, 4, 4, 3, 5, 3, 3, 3, 4, 5, 2, 4, 4, 5, 3, 2, 5, 4, 3, 3, 4, 4, 3, 3, 5, 6, 5, 4, 5, 3, 3, 3, 4, 5, 3, 5, 6, 5, 3, 4, 6, 5, 4, 4, 5, 6, 3, 5, 6, 4, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 4, 6, 5, 2, 6, 5, 3, 4, 4, 5
Offset: 0

Views

Author

Antti Karttunen, Nov 18 2013

Keywords

Comments

The next 1 after a(1), a(3) and a(15) occurs at n=224, as A000217(224) = 25200 = 5 * 7!.

Crossrefs

Programs

Formula

a(n) = A060130(A000217(n)).
a(n) = A230410(A226061(n+1)). [Not a practical way to compute this sequence. Please see comments at A230410.]
Showing 1-3 of 3 results.