cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A232163 Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra so(2n+1).

Original entry on oeis.org

0, 1, 2, 5, 10, 22, 49, 106, 231, 506, 1104, 2409, 5262, 11489, 25082, 54766, 119577, 261078, 570035, 1244610, 2717456, 5933249, 12954570, 28284797, 61756570, 134838326, 294403857, 642796690, 1403472095, 3064318682, 6690584704
Offset: 0

Views

Author

Pamela E Harris, Nov 19 2013

Keywords

Comments

Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type B and rank n.

Examples

			For n=8, a(8) = A232162(8) + A232162(7) + A232162(6) = 139+62+30 = 231.
		

Crossrefs

Cf. A232162.

Programs

  • Maple
    r:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 0:
    elif n=2 then return 2:
    elif n=3 then return 3:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    else return
    r(n)+r(n-1)+r(n-2):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1, 1, 3, 1}, {0, 1, 2, 5}, 31] (* Jean-François Alcover, Nov 26 2017 *)
  • PARI
    Vec(-x*(2*x^2+x+1)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Jan 01 2014

Formula

a(n) = A232162(n) + A232162(n-1) + A232162(n-2).
a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x*(2*x^2+x+1) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Jan 01 2014

A243094 Cardinality of the Weyl alternation set corresponding to the zero-weight in the representation of the Lie algebra sp(2n) whose highest weight is the second fundamental weight.

Original entry on oeis.org

1, 2, 5, 8, 19, 44, 92, 201, 444, 965, 2104, 4602, 10045, 21924, 47879, 104540, 228236, 498337, 1088072, 2375657, 5186976, 11325186, 24727205, 53988976, 117878715, 257374492, 561947340, 1226946953, 2678896484, 5849059949, 12770744632, 27883440986, 60880261949
Offset: 0

Views

Author

Pamela E Harris, Aug 18 2014

Keywords

Comments

Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the defining representation for the Lie algebra of type C and rank n. Here the highest weight would be the second fundamental weight of sp(2n).

Crossrefs

Cf. A232162.

Programs

  • Maple
    r:=proc(n::nonnegint) option remember
    if n=0 then return 0:
    elif n=1 then return 0:
    elif n=2 then return 2:
    elif n=3 then return 3:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    else return
    r(n)+r(n-1):
    end if;
    end proc:
  • Mathematica
    Join[{1}, LinearRecurrence[{1, 1, 3, 1}, {2, 5, 8, 19}, 32]] (* Jean-François Alcover, Dec 05 2017 *)
  • PARI
    Vec( (x^4+2*x^3-2*x^2-x-1) / (x^4+3*x^3+x^2+x-1) +O(x^66) ) \\ Joerg Arndt, Aug 18 2014

Formula

a(n) = A232162(n) + A232162(n-1).
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: (x^4 + 2*x^3 - 2*x^2 - x - 1) / (x^4 + 3*x^3 + x^2 + x - 1). - Joerg Arndt, Aug 18 2014
Showing 1-2 of 2 results.