cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Pamela E Harris

Pamela E Harris's wiki page.

Pamela E Harris has authored 5 sequences.

A243094 Cardinality of the Weyl alternation set corresponding to the zero-weight in the representation of the Lie algebra sp(2n) whose highest weight is the second fundamental weight.

Original entry on oeis.org

1, 2, 5, 8, 19, 44, 92, 201, 444, 965, 2104, 4602, 10045, 21924, 47879, 104540, 228236, 498337, 1088072, 2375657, 5186976, 11325186, 24727205, 53988976, 117878715, 257374492, 561947340, 1226946953, 2678896484, 5849059949, 12770744632, 27883440986, 60880261949
Offset: 0

Author

Pamela E Harris, Aug 18 2014

Keywords

Comments

Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the defining representation for the Lie algebra of type C and rank n. Here the highest weight would be the second fundamental weight of sp(2n).

Crossrefs

Cf. A232162.

Programs

  • Maple
    r:=proc(n::nonnegint) option remember
    if n=0 then return 0:
    elif n=1 then return 0:
    elif n=2 then return 2:
    elif n=3 then return 3:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    else return
    r(n)+r(n-1):
    end if;
    end proc:
  • Mathematica
    Join[{1}, LinearRecurrence[{1, 1, 3, 1}, {2, 5, 8, 19}, 32]] (* Jean-François Alcover, Dec 05 2017 *)
  • PARI
    Vec( (x^4+2*x^3-2*x^2-x-1) / (x^4+3*x^3+x^2+x-1) +O(x^66) ) \\ Joerg Arndt, Aug 18 2014

Formula

a(n) = A232162(n) + A232162(n-1).
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: (x^4 + 2*x^3 - 2*x^2 - x - 1) / (x^4 + 3*x^3 + x^2 + x - 1). - Joerg Arndt, Aug 18 2014

A232165 Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra sp(2n).

Original entry on oeis.org

0, 1, 2, 3, 8, 18, 37, 82, 181, 392, 856, 1873, 4086, 8919, 19480, 42530, 92853, 202742, 442665, 966496, 2110240, 4607473, 10059866, 21964555, 47957080, 104708706, 228619317, 499163818, 1089866333, 2379596808, 5195573912, 11343933537, 24768164206, 54078416287
Offset: 0

Author

Pamela E Harris, Nov 19 2013

Keywords

Comments

Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type C and rank n.

Examples

			For n=3, a(3) = A232164(3) + A232164(2) = 2+1 = 3.
		

References

  • P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.

Crossrefs

Cf. A232164.

Programs

  • Maple
    r:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    elif n=2 then return 1:
    elif n=3 then return 2:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    else return
    r(n)+r(n-1):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1,1,3,1},{0,1,2,3},40] (* Harvey P. Dale, Nov 22 2014 *)
  • PARI
    Vec(-x*(x+1)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Jan 01 2014

Formula

a(n) = A232164(n) + A232164(n-1).
From Colin Barker, Jan 01 2014: (Start)
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x*(x + 1)/(x^4 + 3*x^3 + x^2 + x - 1). (End)

A232164 Number of Weyl group elements, not containing an s_r factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type C and rank n.

Original entry on oeis.org

0, 1, 1, 2, 6, 12, 25, 57, 124, 268, 588, 1285, 2801, 6118, 13362, 29168, 63685, 139057, 303608, 662888, 1447352, 3160121, 6899745, 15064810, 32892270, 71816436, 156802881, 342360937, 747505396, 1632091412, 3563482500, 7780451037, 16987713169, 37090703118
Offset: 0

Author

Pamela E Harris, Nov 19 2013

Keywords

Comments

Apart from the offset the same as A214663. - R. J. Mathar, Nov 27 2013
Apart from the initial 0, number of permutations of length n>=0 avoiding the partially ordered pattern (POP) {1>4} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the last element. - Sergey Kitaev, Dec 08 2020

Examples

			For n=4, a(4)= A232164(3) + A232164(2) + 3*A232164(1) + A232164(0) = 2+1+3*1+0=6.
		

References

  • P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.

Programs

  • Maple
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    elif n=2 then return 1:
    elif n=3 then return 2:
    else return
    a(n-1)+a(n-2)+3*a(n-3)+a(n-4):
    end if;
    end proc:
  • Mathematica
    CoefficientList[Series[x/(1 - x - x^2 -3 x^3- x^4),{x, 0, 30}], x] (* Vincenzo Librandi, Dec 31 2013 *)
  • PARI
    Vec(-x/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 31 2013

Formula

a(n) = A232164(n-1) + A232164(n-2) + 3*A232164(n-3) + A232164(n-4).
From Colin Barker, Dec 31 2013: (Start)
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x/(x^4 + 3*x^3 + x^2 + x - 1). (End)

A232163 Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra so(2n+1).

Original entry on oeis.org

0, 1, 2, 5, 10, 22, 49, 106, 231, 506, 1104, 2409, 5262, 11489, 25082, 54766, 119577, 261078, 570035, 1244610, 2717456, 5933249, 12954570, 28284797, 61756570, 134838326, 294403857, 642796690, 1403472095, 3064318682, 6690584704
Offset: 0

Author

Pamela E Harris, Nov 19 2013

Keywords

Comments

Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type B and rank n.

Examples

			For n=8, a(8) = A232162(8) + A232162(7) + A232162(6) = 139+62+30 = 231.
		

Crossrefs

Cf. A232162.

Programs

  • Maple
    r:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 0:
    elif n=2 then return 2:
    elif n=3 then return 3:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    else return
    r(n)+r(n-1)+r(n-2):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1, 1, 3, 1}, {0, 1, 2, 5}, 31] (* Jean-François Alcover, Nov 26 2017 *)
  • PARI
    Vec(-x*(2*x^2+x+1)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Jan 01 2014

Formula

a(n) = A232162(n) + A232162(n-1) + A232162(n-2).
a(n) = a(n-1)+a(n-2)+3*a(n-3)+a(n-4). G.f.: -x*(2*x^2+x+1) / (x^4+3*x^3+x^2+x-1). - Colin Barker, Jan 01 2014

A232162 Number of Weyl group elements, not containing an s_r factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type B and rank n.

Original entry on oeis.org

0, 0, 2, 3, 5, 14, 30, 62, 139, 305, 660, 1444, 3158, 6887, 15037, 32842, 71698, 156538, 341799, 746273, 1629384, 3557592, 7767594, 16959611, 37029365, 80849350, 176525142, 385422198, 841524755, 1837371729, 4011688220, 8759056412, 19124384574, 41755877375, 91169119405
Offset: 0

Author

Pamela E Harris, Nov 19 2013

Keywords

Examples

			For n=4, a(4) = A232162(3) + A232162(2) + 3*A232162(1) + A232162(0) = 3+2+3*0+0=5.
		

References

  • P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.

Crossrefs

Programs

  • Maple
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 0:
    elif n=2 then return 2:
    elif n=3 then return 3:
    else return
    a(n-1)+a(n-2)+3*a(n-3)+a(n-4):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1, 1, 3, 1}, {0, 0, 2, 3}, 32] (* Jean-François Alcover, Nov 24 2017 *)
  • PARI
    Vec(-x^2*(x+2)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 31 2013

Formula

a(n) = A232162(n-1) + A232162(n-2) + 3*A232162(n-3) + A232162(n-4).
From Colin Barker, Dec 31 2013: (Start)
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x^2*(x + 2)/(x^4 + 3*x^3 + x^2 + x - 1). (End)