cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A232162 Number of Weyl group elements, not containing an s_r factor, which contribute nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type B and rank n.

Original entry on oeis.org

0, 0, 2, 3, 5, 14, 30, 62, 139, 305, 660, 1444, 3158, 6887, 15037, 32842, 71698, 156538, 341799, 746273, 1629384, 3557592, 7767594, 16959611, 37029365, 80849350, 176525142, 385422198, 841524755, 1837371729, 4011688220, 8759056412, 19124384574, 41755877375, 91169119405
Offset: 0

Views

Author

Pamela E Harris, Nov 19 2013

Keywords

Examples

			For n=4, a(4) = A232162(3) + A232162(2) + 3*A232162(1) + A232162(0) = 3+2+3*0+0=5.
		

References

  • P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.

Crossrefs

Programs

  • Maple
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 0:
    elif n=2 then return 2:
    elif n=3 then return 3:
    else return
    a(n-1)+a(n-2)+3*a(n-3)+a(n-4):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1, 1, 3, 1}, {0, 0, 2, 3}, 32] (* Jean-François Alcover, Nov 24 2017 *)
  • PARI
    Vec(-x^2*(x+2)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Dec 31 2013

Formula

a(n) = A232162(n-1) + A232162(n-2) + 3*A232162(n-3) + A232162(n-4).
From Colin Barker, Dec 31 2013: (Start)
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x^2*(x + 2)/(x^4 + 3*x^3 + x^2 + x - 1). (End)

A232165 Cardinality of the Weyl alternation set corresponding to the zero-weight in the adjoint representation of the Lie algebra sp(2n).

Original entry on oeis.org

0, 1, 2, 3, 8, 18, 37, 82, 181, 392, 856, 1873, 4086, 8919, 19480, 42530, 92853, 202742, 442665, 966496, 2110240, 4607473, 10059866, 21964555, 47957080, 104708706, 228619317, 499163818, 1089866333, 2379596808, 5195573912, 11343933537, 24768164206, 54078416287
Offset: 0

Views

Author

Pamela E Harris, Nov 19 2013

Keywords

Comments

Number of Weyl group elements contributing nonzero terms to Kostant's weight multiplicity formula when computing the multiplicity of the zero-weight in the adjoint representation for the Lie algebra of type C and rank n.

Examples

			For n=3, a(3) = A232164(3) + A232164(2) = 2+1 = 3.
		

References

  • P. E. Harris, Combinatorial problems related to Kostant's weight multiplicity formula, PhD Dissertation, University of Wisconsin-Milwaukee, 2012.

Crossrefs

Cf. A232164.

Programs

  • Maple
    r:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    elif n=2 then return 1:
    elif n=3 then return 2:
    else return
    r(n-1)+r(n-2)+3*r(n-3)+r(n-4):
    end if;
    end proc:
    a:=proc(n::nonnegint)
    if n=0 then return 0:
    elif n=1 then return 1:
    else return
    r(n)+r(n-1):
    end if;
    end proc:
  • Mathematica
    LinearRecurrence[{1,1,3,1},{0,1,2,3},40] (* Harvey P. Dale, Nov 22 2014 *)
  • PARI
    Vec(-x*(x+1)/(x^4+3*x^3+x^2+x-1) + O(x^100)) \\ Colin Barker, Jan 01 2014

Formula

a(n) = A232164(n) + A232164(n-1).
From Colin Barker, Jan 01 2014: (Start)
a(n) = a(n-1) + a(n-2) + 3*a(n-3) + a(n-4).
G.f.: -x*(x + 1)/(x^4 + 3*x^3 + x^2 + x - 1). (End)
Showing 1-2 of 2 results.