cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232223 Triangle read by rows: T(n,k) = number of connected matchings with n crossings and k chords, in a disk, k=2..n+1.

Original entry on oeis.org

1, 0, 3, 0, 1, 12, 0, 0, 10, 55, 0, 0, 4, 77, 273, 0, 0, 1, 60, 546, 1428, 0, 0, 0, 35, 624, 3740, 7752, 0, 0, 0, 15, 546, 5600, 25194, 43263, 0, 0, 0, 5, 391, 6405, 46512, 168245, 246675, 0, 0, 0, 1, 240, 6125, 65076, 368676, 1118260, 1430715, 0, 0, 0, 0, 126, 5138, 76296, 606879, 2833600, 7413705, 8414640, 0, 0, 0, 0, 56, 3857, 78880, 834195, 5348420, 21312720, 49085400, 50067108
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2013

Keywords

Examples

			Triangle begins:
1,
0,3,
0,1,12,
0,0,10,55,
0,0,4,77,273,
0,0,1,60,546,1428,
0,0,0,35,624,3740,7752,
0,0,0,15,546,5600,25194,43263,
0,0,0,5,391,6405,46512,168245,246675,
...
		

Crossrefs

Cf. A232222 (row sums), A000699 (column sums), A322456 (transpose).
Cf. A067311.

Programs

  • PARI
    \\ M(n,m) is the n-th row of A067311 truncated at m.
    M(n,m)={1/(1-y+O(y*y^m))^n*sum(k=0, (sqrtint(m*8+1)-1)\2, (-1)^k * ( binomial(2*n, n-k)-binomial(2*n, n-k-1)) * y^(k*(k+1)/2) )}
    T(n)={my(g=sum(k=0,n+1,M(k,n)*x^k,O(x^2*x^n)), v=Vec(sqrt((x/serreverse( x*g^2 ))))); vector(n, n, vector(n, k, polcoef(v[2+k],n)))} \\ Andrew Howroyd, Nov 22 2024

Extensions

3 more rows. - R. J. Mathar, Dec 09 2018