A232223 Triangle read by rows: T(n,k) = number of connected matchings with n crossings and k chords, in a disk, k=2..n+1.
1, 0, 3, 0, 1, 12, 0, 0, 10, 55, 0, 0, 4, 77, 273, 0, 0, 1, 60, 546, 1428, 0, 0, 0, 35, 624, 3740, 7752, 0, 0, 0, 15, 546, 5600, 25194, 43263, 0, 0, 0, 5, 391, 6405, 46512, 168245, 246675, 0, 0, 0, 1, 240, 6125, 65076, 368676, 1118260, 1430715, 0, 0, 0, 0, 126, 5138, 76296, 606879, 2833600, 7413705, 8414640, 0, 0, 0, 0, 56, 3857, 78880, 834195, 5348420, 21312720, 49085400, 50067108
Offset: 1
Examples
Triangle begins: 1, 0,3, 0,1,12, 0,0,10,55, 0,0,4,77,273, 0,0,1,60,546,1428, 0,0,0,35,624,3740,7752, 0,0,0,15,546,5600,25194,43263, 0,0,0,5,391,6405,46512,168245,246675, ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
- V. Pilaud, J. Rué, Analytic combinatorics of chord and hyperchord diagrams with k crossings, arXiv preprint arXiv:1307.6440, 2013.
Programs
-
PARI
\\ M(n,m) is the n-th row of A067311 truncated at m. M(n,m)={1/(1-y+O(y*y^m))^n*sum(k=0, (sqrtint(m*8+1)-1)\2, (-1)^k * ( binomial(2*n, n-k)-binomial(2*n, n-k-1)) * y^(k*(k+1)/2) )} T(n)={my(g=sum(k=0,n+1,M(k,n)*x^k,O(x^2*x^n)), v=Vec(sqrt((x/serreverse( x*g^2 ))))); vector(n, n, vector(n, k, polcoef(v[2+k],n)))} \\ Andrew Howroyd, Nov 22 2024
Extensions
3 more rows. - R. J. Mathar, Dec 09 2018