cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232266 Triangle where T(n,k) = number of compositions of n^2 - k^2 into sums of squares for k=0..n, n>=0, as read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 11, 7, 3, 1, 124, 88, 30, 5, 1, 2870, 2024, 710, 124, 11, 1, 133462, 94137, 33033, 5767, 502, 22, 1, 12477207, 8800750, 3088365, 539192, 46832, 2024, 43, 1, 2344649612, 1653790807, 580347968, 101321507, 8800750, 380315, 8176, 88, 1, 885591183971, 624648802700, 219201637352, 38269865019, 3324109524, 143647802, 3088365, 33033, 175, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2013

Keywords

Examples

			Triangle begins:
1;
1, 1;
2, 1, 1;
11, 7, 3, 1;
124, 88, 30, 5, 1;
2870, 2024, 710, 124, 11, 1;
133462, 94137, 33033, 5767, 502, 22, 1;
12477207, 8800750, 3088365, 539192, 46832, 2024, 43, 1;
2344649612, 1653790807, 580347968, 101321507, 8800750, 380315, 8176, 88, 1;
885591183971, 624648802700, 219201637352, 38269865019, 3324109524, 143647802, 3088365, 33033, 175, 1; ...
where T(n,k) = coefficient of x^(n^2-k^2) in the series:
1/(1 - x - x^4 - x^9 - x^16 - x^25 - x^36 -...- x^(n^2) -...) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 11*x^9 + 16*x^10 + 22*x^11 + 30*x^12 + 43*x^13 + 62*x^14 + 88*x^15 + 124*x^16 + 175*x^17 + 249*x^18 + 354*x^19 + 502*x^20 + 710*x^21 + 1006*x^22 + 1427*x^23 + 2024*x^24 + 2870*x^25 +...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=polcoeff(1/(1-sum(m=1,n+1,x^(m^2))+x*O(x^(n^2-k^2))),n^2-k^2)}
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = A006456(n^2-k^2).
T(n,k) = [x^(n^2-k^2)] 1/(1 - Sum_{j>=1} x^(j^2)).
T(n,0) = Sum_{k=1..n} T(n,k) for n>=1.