cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232316 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.

Original entry on oeis.org

2, 5, 5, 16, 24, 13, 52, 139, 115, 34, 169, 853, 1202, 551, 89, 549, 5241, 14042, 10409, 2640, 233, 1784, 32089, 164014, 231454, 90157, 12649, 610, 5797, 196698, 1905436, 5142441, 3815483, 780922, 60605, 1597, 18837, 1205422, 22161823, 113293694
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2013

Keywords

Comments

Table starts
.....2.......5.........16............52..............169.................549
.....5......24........139...........853.............5241...............32089
....13.....115.......1202.........14042...........164014.............1905436
....34.....551......10409........231454..........5142441...........113293694
....89....2640......90157.......3815483........161243887..........6736602042
...233...12649.....780922......62897985.......5055954492........400571676322
...610...60605....6764246....1036869496.....158534446141......23818815015639
..1597..290376...58591124...17092731689....4971005036586....1416315842358249
..4181.1391275..507509767..281772661177..155870804492221...84217060496525106
.10946.6665999.4395993154.4645005493684.4887484036570530.5007720081104988709

Examples

			Some.solutions.for.n=3.k=4
..0..0..0..1..1....0..0..1..1..0....0..0..0..1..1....0..0..1..1..0
..0..0..1..1..1....0..1..1..0..0....0..0..0..1..1....0..1..1..0..1
..1..1..0..0..0....1..0..0..1..1....0..0..1..1..1....0..0..0..1..0
..1..1..1..1..1....1..1..1..0..0....0..0..0..0..0....1..1..1..0..0
		

Crossrefs

Column 1 is A001519(n+1)
Column 2 is A004254(n+1)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -a(n-2)
k=2: a(n) = 5*a(n-1) -a(n-2)
k=3: a(n) = 10*a(n-1) -11*a(n-2) -5*a(n-3) -a(n-4)
k=4: a(n) = 19*a(n-1) -44*a(n-2) +43*a(n-3) -19*a(n-4) +4*a(n-5) -2*a(n-6) for n>7
k=5: [order 12] for n>13
k=6: [order 18] for n>20
k=7: [order 37] for n>40
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) for n>5
n=2: [order 12] for n>14
n=3: [order 32] for n>34
n=4: [order 78] for n>82