A232316 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every element equal to some horizontal or antidiagonal neighbor, with top left element zero.
2, 5, 5, 16, 24, 13, 52, 139, 115, 34, 169, 853, 1202, 551, 89, 549, 5241, 14042, 10409, 2640, 233, 1784, 32089, 164014, 231454, 90157, 12649, 610, 5797, 196698, 1905436, 5142441, 3815483, 780922, 60605, 1597, 18837, 1205422, 22161823, 113293694
Offset: 1
Examples
Some.solutions.for.n=3.k=4 ..0..0..0..1..1....0..0..1..1..0....0..0..0..1..1....0..0..1..1..0 ..0..0..1..1..1....0..1..1..0..0....0..0..0..1..1....0..1..1..0..1 ..1..1..0..0..0....1..0..0..1..1....0..0..1..1..1....0..0..0..1..0 ..1..1..1..1..1....1..1..1..0..0....0..0..0..0..0....1..1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..390
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) -a(n-2)
k=2: a(n) = 5*a(n-1) -a(n-2)
k=3: a(n) = 10*a(n-1) -11*a(n-2) -5*a(n-3) -a(n-4)
k=4: a(n) = 19*a(n-1) -44*a(n-2) +43*a(n-3) -19*a(n-4) +4*a(n-5) -2*a(n-6) for n>7
k=5: [order 12] for n>13
k=6: [order 18] for n>20
k=7: [order 37] for n>40
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4) for n>5
n=2: [order 12] for n>14
n=3: [order 32] for n>34
n=4: [order 78] for n>82
Comments