A232326 Pierce expansion of 1 to the base Pi.
3, 69, 310, 1017, 36745, 214369, 966652, 11159821, 74039764, 550021544, 4481549430, 16543857917, 87205978613, 476981856953, 30989048525367, 203786458494160, 711639924282497, 3174772986229899, 29814569078896025, 100158574806804154
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Pierce Expansion
Programs
-
Maple
# Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1 map_iterate := proc(n,b,x) option remember; if n = 0 then x else -1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x)) end if end proc: # Define the (signed) terms of the expansion of x to the base b a := n -> ceil(evalf(b/map_iterate(n,b,x))): Digits:= 500: # Choose values for x and b x := -1: b:= Pi: seq(abs(a(n)), n = 0..19);
Formula
a(n) = ceiling(Pi/f^(n)(-1)), where f^(n)(x) denotes the n-th iterate of the map f(x) = x/Pi*ceiling(Pi/x) - 1, with the convention that f^(0)(x) = x.
Pierce series expansion of 1 to the base Pi:
1 = Pi/3 - Pi^2/(3*69) + Pi^3/(3*69*310) - Pi^4/(3*69*310*1017) + ....
The associated power series F(z) := 1 - ( z/3 - z^2/(3*69) + z^3/(3*69*310) - z^4/(3*69*310*1017) + ...) has a zero at z = Pi. Truncating the series F(z) to n terms produces a polynomial F_n(z) with rational coefficients which has a real zero close to Pi.
Comments