A232327 A generalized Engel expansion of 1/Pi.
3, 23, 27, 89, 137, 9190, 25731, 80457, 125859, 270815, 609977, 959612, 1034186, 1491489, 2975032, 264484387, 1092196976, 1194228023, 1424193547, 4523998315, 13583506006, 380693793416, 1097951708621, 1486580651232
Offset: 0
Examples
Comparison of the Engel, alternating Engel and generalized Engel series expansions for 1/Pi. A014012: Engel series expansion 1/Pi = 1/4 + 1/(4*4) + 1/(4*4*11) + 1/(4*4*11*45) + 1/(4*4*11*45*70) + ... A006283: Alternating Engel series expansion 1/Pi = 1/3 - 1/(3*22) + 1/(3*22*118) - 1/(3*22*118*383) + 1/(3*22*118*83*571) - ... A232327: Generalized Engel series expansion of the first kind 1/Pi = 1/3 - 1/(3*23) - 1/(3*23*27) + 1/(3*23*27*89) + 1/(3*23*27*89*137) - - + + .... A232328: Generalized Engel series expansion of the second kind 1/Pi = 1/4 + 1/(4*3) - 1/(4*3*6) - 1/(4*3*6*12) + 1/(4*3*6*12*51) + 1/(4*3*6*12*51*146) - - + + ...
Links
- Eric Weisstein's World of Mathematics, Pierce Expansion
- Wikipedia, Engel Expansion
Programs
-
Maple
#A232327 #Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1 map_iterate := proc(n,b,x) option remember; if n = 0 then x else -1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x)) end if end proc: #Define the terms of the expansion of x to the base b a := n -> ceil(evalf(b/map_iterate(n,b,x))): Digits := 500: #Choose values for x and b x := 1/Pi: b:= -1: seq(abs(a(n)), n = 0..25);
Formula
a(n) = ceiling(1/g^(n)(1/Pi)), where g(x) = -x*ceiling(-1/x) - 1.
Generalized Engel series expansion:
1/Pi = 1/3 - 1/(3*23) - 1/(3*23*27) + 1/(3*23*27*89) + 1/(3*23*27*89*137) - - + +.
Comments