A232328 A generalized Engel expansion of 1/Pi.
4, 3, 6, 12, 51, 146, 280, 482, 687, 3825, 5646, 30904, 120121, 1344923, 2340376, 4456271, 194324055, 219784933, 976224357, 11584437417, 26402463827, 34635051144, 85031207055, 95014277980, 257962314442
Offset: 0
Links
- Eric Weisstein's World of Mathematics, Pierce Expansion
- Wikipedia, Engel Expansion
Programs
-
Maple
#A232328 #Define the n-th iterate of the map f(x) = x/b*ceiling(b/x) - 1 map_iterate := proc(n,b,x) option remember; if n = 0 then x else -1 + 1/b*thisproc(n-1,b,x)*ceil(b/thisproc(n-1,b,x)) end if end proc: #Define the terms of the expansion of x to the base b a := n -> ceil(evalf(b/map_iterate(n,b,x))): Digits:= 500: #Choose values for x and b x := -1/Pi: b:= -1: seq(abs(a(n)), n = 0..24);
Formula
Define the map g(x) by g(x) = -x*ceiling(-1/x) - 1 and let g^n(x) denote the n-th iterate of g, with the convention that g^0(x) = x. Then a(n) = |ceiling(1/g^n(-1/Pi))| for n >= 0.
Generalized Engel series expansion: 1/Pi = 1/4 + 1/(4*3) - 1/(4*3*6) - 1/(4*3*6*12) + 1/(4*3*6*12*51) + 1/(4*3*6*12*51*146) - - + +.
Comments