cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232433 E.g.f. satisfies: A(x,q) = exp( Integral A(x,q)*A(q*x,q) dx ).

Original entry on oeis.org

1, 1, 2, 1, 6, 6, 2, 1, 24, 36, 22, 14, 6, 2, 1, 120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1, 720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1, 5040, 15120, 21000, 21840, 19824, 15834, 12144, 8758, 5904, 3860, 2442, 1482, 870, 492, 260, 142, 68, 32, 14, 6, 2, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2013

Keywords

Examples

			E.g.f.: A(x,q) = 1 + (1)*x + (2 + q)*x^2/2! + (6 + 6*q + 2*q^2 + q^3)*x^3/3!
+ (24 + 36*q + 22*q^2 + 14*q^3 + 6*q^4 + 2*q^5 + q^6)*x^4/4!
+ (120 + 240*q + 210*q^2 + 160*q^3 + 104*q^4 + 56*q^5 + 32*q^6 + 14*q^7 + 6*q^8 + 2*q^9 + q^10)*x^5/5! +...
The triangle of coefficients T(n,k) of x^n*q^k, for n>=0, k=0..n*(n-1)/2, in e.g.f. A(x,q) begins:
[1];
[1];
[2, 1];
[6, 6, 2, 1];
[24, 36, 22, 14, 6, 2, 1];
[120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1];
[720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1];
[5040, 15120, 21000, 21840, 19824, 15834, 12144, 8758, 5904, 3860, 2442, 1482, 870, 492, 260, 142, 68, 32, 14, 6, 2, 1];
[40320, 141120, 231840, 275520, 280056, 251496, 212112, 170424, 129716, 95248, 67632, 46616, 31280, 20576, 13142, 8232, 5004, 2954, 1706, 966, 524, 276, 142, 68, 32, 14, 6, 2, 1]; ...
The limit of the reversed rows (A232434) begins:
[1, 2, 6, 14, 32, 68, 142, 276, 542, 1022, 1876, 3394, 6066, 10628, ...].
		

Crossrefs

Programs

  • Mathematica
    nmax = 8; A[, ] = 0; Do[A[x_, q_] = Exp[Integrate[A[x, q] A[q x, q], x]] + O[x]^n // Normal // Simplify, {n, nmax}];
    CoefficientList[#, q]& /@ (CoefficientList[A[x, q], x] Range[0, nmax-1]!) // Flatten (* Jean-François Alcover, Oct 27 2018 *)
  • PARI
    {T(n,k)=local(A=1+x);for(i=1,n,A=exp(intformal(A*subst(A,x,x*y +x*O(x^n)),x)));n!*polcoeff(polcoeff(A,n,x),k,y)}
    for(n=0,12,for(k=0,n*(n-1)/2,print1(T(n,k),", "));print(""))

Formula

E.g.f. satisfies: d/dx A(x,q) = A(x,q)^2 * A(q*x,q).
Row sums equal the odd double factorials.
Limit of reversed rows yield A232434.