cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232435 Number T(n,k) of compositions of n with exactly k (possibly overlapping) occurrences of the consecutive pattern 111; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 3, 1, 7, 0, 1, 13, 2, 0, 1, 24, 5, 2, 0, 1, 46, 11, 4, 2, 0, 1, 89, 21, 11, 4, 2, 0, 1, 170, 45, 23, 11, 4, 2, 0, 1, 324, 99, 47, 23, 12, 4, 2, 0, 1, 618, 209, 102, 52, 23, 13, 4, 2, 0, 1, 1183, 427, 226, 112, 55, 24, 14, 4, 2, 0, 1, 2260, 883, 479
Offset: 0

Views

Author

Alois P. Heinz, Nov 23 2013

Keywords

Examples

			T(4,0) = 7: [4], [3,1], [2,2], [1,3], [2,1,1], [1,2,1], [1,1,2].
T(7,1) = 11: [4,1,1,1], [2,2,2,1], [1,2,2,2], [1,1,1,4], [1,3,1,1,1], [2,2,1,1,1], [1,1,1,3,1], [2,1,1,1,2], [1,1,1,2,2], [1,1,1,2,1,1], [1,1,2,1,1,1].
T(7,2) = 4: [3,1,1,1,1], [1,1,1,1,3], [1,2,1,1,1,1], [1,1,1,1,2,1].
T(7,3) = 2: [2,1,1,1,1,1], [1,1,1,1,1,2].
T(7,5) = 1: [1,1,1,1,1,1,1].
Triangle T(n,k) begins:
:  0 :   1;
:  1 :   1;
:  2 :   2;
:  3 :   3,  1;
:  4 :   7,  0,  1;
:  5 :  13,  2,  0,  1;
:  6 :  24,  5,  2,  0,  1;
:  7 :  46, 11,  4,  2,  0, 1;
:  8 :  89, 21, 11,  4,  2, 0, 1;
:  9 : 170, 45, 23, 11,  4, 2, 0, 1;
: 10 : 324, 99, 47, 23, 12, 4, 2, 0, 1;
		

Crossrefs

Column k=0 gives: A128695.
Row sums give: A011782.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1,
          expand(add(`if`(abs(t)<>j, b(n-j, j),
          `if`(t<0, x, 1)*b(n-j, -j)), j=1..n)))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, t_] := b[n, t] = If[n==0, 1, Expand[Sum[If[Abs[t] != j, b[n-j, j], If[t<0, x, 1]*b[n-j, -j]], {j, 1, n}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)