A232439 Number T(n,k) of standard Young tableaux with n cells and major index k; triangle T(n,k), n>=0, 0<=k<=n*(n-1)/2, read by rows.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 1, 1, 1, 1, 2, 4, 5, 7, 9, 9, 9, 9, 7, 5, 4, 2, 1, 1, 1, 1, 2, 4, 6, 9, 13, 16, 19, 22, 23, 23, 22, 19, 16, 13, 9, 6, 4, 2, 1, 1, 1, 1, 2, 4, 7, 10, 16, 22, 30, 37, 46, 52, 60, 62, 64, 62
Offset: 0
Examples
For n=4 the 10 tableaux sorted by major index (sum of descent set) are: :[1 2 3 4]:[1 3 4]:[1 2] [1 2 4]:[1 4] [1 2 3]:[1 3] [1 3]:[1 2]:[1]: : :[2] :[3 4] [3] :[2] [4] :[2] [2 4]:[3] :[2]: : : : :[3] :[4] :[4] :[3]: : : : : : : :[4]: : ---0--- : --1-- : -----2----- : -----3----- : ----4---- : -5- : 6 : Triangle T(n,k) begins: 1; 1; 1, 1; 1, 1, 1, 1; 1, 1, 2, 2, 2, 1, 1; 1, 1, 2, 3, 4, 4, 4, 3, 2, 1, 1; 1, 1, 2, 4, 5, 7, 9, 9, 9, 9, 7, 5, 4, 2, 1, 1; 1, 1, 2, 4, 6, 9, 13, 16, 19, 22, 23, 23, 22, 19, 16, 13, 9, 6, 4, 2, 1, 1; The 10 ballot sequences of length 4 are: ## [ ballot seq] ascent positions sum 01: [ 1 1 1 1 ] (none) 0 02: [ 1 1 1 2 ] 3 3 03: [ 1 1 2 1 ] 2 2 04: [ 1 1 2 2 ] 2 2 05: [ 1 1 2 3 ] 2 + 3 5 06: [ 1 2 1 1 ] 1 1 07: [ 1 2 1 2 ] 1 + 3 4 08: [ 1 2 1 3 ] 1 + 3 4 09: [ 1 2 3 1 ] 1 + 2 3 10: [ 1 2 3 4 ] 1 + 2 + 3 6 The numbers 2, 3, and 4 appear twice, all others once, so the row four is 1, 1, 2, 2, 2, 1, 1.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..40, flattened
- FindStat - Combinatorial Statistic Finder, The charge of the tableau, The inversion number of a standard Young tableau as defined by Haglund and Stevens, The cocharge of a standard tableau
- James Haglund, The q,t-Catalan Numbers and the Space of Diagonal Harmonics, AMS University Lecture Series, vol. 41, 2008.
- Wikipedia, Young tableau
Programs
-
Maple
b:= proc(l, i) option remember; `if`(l=[], 1, expand(add( `if`(l[j]>`if`(j=1, 0, l[j-1]), `if`(j=1 and l[j]=1, b(subsop(1=NULL, l), j-1), b(subsop(j=l[j]-1, l), j))* x^`if`(j>i, add(t, t=l), 0), 0), j=1..nops(l)))) end: g:= (n, i, l)-> `if`(n=0 or i=1, b([1$n, l[]], nops(l)+n), add(g(n-i*j, i-1, [i$j, l[]]), j=0..n/i)): T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$2, [])): seq(T(n), n=0..10); # second Maple program (counting ballot sequences): b:= proc(n, v, l) option remember; local w; w:=add(t, t=l); `if`(n<1, 1, expand(add(`if`(i=1 or l[i-1]>l[i], `if`(v(p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 1, [1])): seq(T(n), n=0..10);
-
Mathematica
b[l_List, i_] := b[l, i] = If[l == {}, 1, Expand[Sum[ If[l[[j]] > If[j == 1, 0, l[[j-1]]], If[j == 1 && l[[j]] == 1, b[ReplacePart[l, 1 -> Sequence[]], j-1], b[ReplacePart[l, j -> l[[j]]-1], j]]*x^If[j>i, Total[l], 0], 0], {j, 1, Length[l]}]]] ; g[n_, i_, l_List] := g[n, i, l] = If[n == 0 || i == 1, b[Join[Array[1&, n], l], Length[l]+n], Sum[g[n-i*j, i-1, Join[Array[i&, j], l]], {j, 0, n/i}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n, {}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 14 2015, translated from Maple *)
Comments