cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232439 Number T(n,k) of standard Young tableaux with n cells and major index k; triangle T(n,k), n>=0, 0<=k<=n*(n-1)/2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 1, 1, 1, 1, 2, 4, 5, 7, 9, 9, 9, 9, 7, 5, 4, 2, 1, 1, 1, 1, 2, 4, 6, 9, 13, 16, 19, 22, 23, 23, 22, 19, 16, 13, 9, 6, 4, 2, 1, 1, 1, 1, 2, 4, 7, 10, 16, 22, 30, 37, 46, 52, 60, 62, 64, 62
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 23 2014

Keywords

Comments

Rows are symmetric.
The row beginnings converge to A003293.
T(n,k) is also the number of ballot sequences of length n with k the sum of positions of all ascents, see example.

Examples

			For n=4 the 10 tableaux sorted by major index (sum of descent set) are:
:[1 2 3 4]:[1 3 4]:[1 2] [1 2 4]:[1 4] [1 2 3]:[1 3] [1 3]:[1 2]:[1]:
:         :[2]    :[3 4] [3]    :[2]   [4]    :[2]   [2 4]:[3]  :[2]:
:         :       :             :[3]          :[4]        :[4]  :[3]:
:         :       :             :             :           :     :[4]:
: ---0--- : --1-- : -----2----- : -----3----- : ----4---- : -5- : 6 :
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 1, 1, 1;
1, 1, 2, 2, 2, 1,  1;
1, 1, 2, 3, 4, 4,  4,  3,  2,  1,  1;
1, 1, 2, 4, 5, 7,  9,  9,  9,  9,  7,  5,  4,  2,  1,  1;
1, 1, 2, 4, 6, 9, 13, 16, 19, 22, 23, 23, 22, 19, 16, 13, 9, 6, 4, 2, 1, 1;
The 10 ballot sequences of length 4 are:
##   [ ballot seq] ascent positions  sum
01:  [ 1 1 1 1 ]   (none)            0
02:  [ 1 1 1 2 ]   3                 3
03:  [ 1 1 2 1 ]   2                 2
04:  [ 1 1 2 2 ]   2                 2
05:  [ 1 1 2 3 ]   2 + 3             5
06:  [ 1 2 1 1 ]   1                 1
07:  [ 1 2 1 2 ]   1 + 3             4
08:  [ 1 2 1 3 ]   1 + 3             4
09:  [ 1 2 3 1 ]   1 + 2             3
10:  [ 1 2 3 4 ]   1 + 2 + 3         6
The numbers 2, 3, and 4 appear twice, all others once, so the row four is  1, 1, 2, 2, 2, 1, 1.
		

Crossrefs

Row sums give A000085.

Programs

  • Maple
    b:= proc(l, i) option remember; `if`(l=[], 1, expand(add(
          `if`(l[j]>`if`(j=1, 0, l[j-1]), `if`(j=1 and l[j]=1,
           b(subsop(1=NULL, l), j-1), b(subsop(j=l[j]-1, l), j))*
           x^`if`(j>i, add(t, t=l), 0), 0), j=1..nops(l))))
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, b([1$n, l[]], nops(l)+n),
                     add(g(n-i*j, i-1, [i$j, l[]]), j=0..n/i)):
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$2, [])):
    seq(T(n), n=0..10);
    # second Maple program (counting ballot sequences):
    b:= proc(n, v, l) option remember; local w; w:=add(t, t=l);
          `if`(n<1, 1, expand(add(`if`(i=1 or l[i-1]>l[i],
          `if`(v(p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n-1, 1, [1])):
    seq(T(n), n=0..10);
  • Mathematica
    b[l_List, i_] := b[l, i] = If[l == {}, 1, Expand[Sum[ If[l[[j]] > If[j == 1, 0, l[[j-1]]], If[j == 1 && l[[j]] == 1, b[ReplacePart[l, 1 -> Sequence[]], j-1], b[ReplacePart[l, j -> l[[j]]-1], j]]*x^If[j>i, Total[l], 0], 0], {j, 1, Length[l]}]]] ; g[n_, i_, l_List] := g[n, i, l] = If[n == 0 || i == 1, b[Join[Array[1&, n], l], Length[l]+n], Sum[g[n-i*j, i-1, Join[Array[i&, j], l]], {j, 0, n/i}]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][g[n, n, {}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 14 2015, translated from Maple *)