A232440 Number T(n,k) of equivalence classes of ways of placing k 5 X 5 tiles in an n X 5 rectangle under all symmetry operations of the rectangle; irregular triangle T(n,k), n>=5, 0<=k<=floor(n/5), read by rows.
1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 4, 2, 1, 4, 4, 1, 5, 6, 1, 5, 9, 1, 6, 12, 1, 1, 6, 16, 2, 1, 7, 20, 6, 1, 7, 25, 10, 1, 8, 30, 19, 1, 8, 36, 28, 1, 1, 9, 42, 44, 3, 1, 9, 49, 60, 9, 1, 10, 56, 85, 19, 1, 10, 64, 110, 38, 1, 11, 72, 146, 66, 1
Offset: 5
Examples
The first 9 rows of T(n,k) are: .\ k 0 1 2 n 5 1 1 6 1 1 7 1 2 8 1 2 9 1 3 10 1 3 1 11 1 4 2 12 1 4 4 13 1 5 6
Links
- Andrew Howroyd, Table of n, a(n) for n = 5..989
- Christopher Hunt Gribble, C++ program
Crossrefs
Programs
-
Mathematica
T[n_, k_] := (Binomial[n - 4k, k] + Boole[EvenQ[k] || OddQ[n]] Binomial[(n - 4k - Mod[n, 2])/2, Quotient[k, 2]])/2; Table[T[n, k], {n, 5, 20}, {k, 0, Quotient[n, 5]}] // Flatten (* Jean-François Alcover, Oct 06 2017, after Andrew Howroyd *)
-
PARI
T(n,k)={(binomial(n-4*k,k) + (k%2==0||n%2==1)*binomial((n-4*k-n%2)/2,k\2))/2} for(n=5,20,for(k=0,(n\5), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017
Extensions
Terms extended and xrefs updated by Christopher Hunt Gribble, Apr 26 2015
Terms a(27) and beyond from Andrew Howroyd, May 29 2017