A232446 Primes p such that reversal( p^2 ) + p is also prime.
7, 151, 787, 1549, 1579, 2029, 2083, 2179, 2833, 2971, 4549, 4591, 4801, 4999, 5077, 5167, 5179, 5209, 5227, 5407, 6343, 6529, 6547, 6553, 6577, 6679, 7027, 7753, 7867, 7873, 7927, 7963, 7993, 8167, 8191, 8311, 9091, 9103, 9151, 9283, 14251, 14281, 14389, 14437
Offset: 1
Keywords
Examples
a(1)= 7, it is prime: prime(4)= 7: reversal(7^2)+7= reversal(49)+7= 94+7= 101 which is also prime. a(2)= 151, it is prime: prime(36)= 151: reversal(151^2)+151= reversal(22801)+151=10822+151= 10973 which is also prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..4250
Crossrefs
Programs
-
Maple
with(StringTools): KD:= proc() local a,p; p:=ithprime(n);a:= parse(Reverse(convert((p^2), string)))+p; if isprime(a) then RETURN (p): fi; end: seq(KD(), n=1..3000);
-
Mathematica
Select[Prime[Range[3000]], PrimeQ[# + FromDigits[Reverse[IntegerDigits[#^2]]]] &]