cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232446 Primes p such that reversal( p^2 ) + p is also prime.

Original entry on oeis.org

7, 151, 787, 1549, 1579, 2029, 2083, 2179, 2833, 2971, 4549, 4591, 4801, 4999, 5077, 5167, 5179, 5209, 5227, 5407, 6343, 6529, 6547, 6553, 6577, 6679, 7027, 7753, 7867, 7873, 7927, 7963, 7993, 8167, 8191, 8311, 9091, 9103, 9151, 9283, 14251, 14281, 14389, 14437
Offset: 1

Views

Author

K. D. Bajpai, Nov 24 2013

Keywords

Examples

			a(1)= 7, it is prime: prime(4)= 7: reversal(7^2)+7= reversal(49)+7= 94+7= 101 which is also prime.
a(2)= 151, it is prime: prime(36)= 151: reversal(151^2)+151= reversal(22801)+151=10822+151= 10973 which is also prime.
		

Crossrefs

Cf. A061783 (primes p: p+(p reversed) is also prime).
Function reversal is given by A004086. Cf. also A004087.

Programs

  • Maple
    with(StringTools): KD:= proc() local a,p; p:=ithprime(n);a:= parse(Reverse(convert((p^2), string)))+p; if isprime(a) then RETURN (p): fi; end: seq(KD(), n=1..3000);
  • Mathematica
    Select[Prime[Range[3000]], PrimeQ[# + FromDigits[Reverse[IntegerDigits[#^2]]]] &]