A232450 Largest prime factor of the Belphegor number B(n) = (10^(n+3) + 666)*10^(n+1) + 1.
16661, 1103, 1417831, 1143749, 14282381, 11699423, 1950071, 7503425119, 3837692792387, 145857793, 76607717987, 1755833757671518620617, 17416012536871141, 1000000000000066600000000000001, 16540928199996367, 744657085412168192717253704669
Offset: 0
Keywords
Links
- Stanislav Sykora and Amiram Eldar, Table of n, a(n) for n = 0..64 (terms 0..44 from Stanislav Sykora)
- Clifford A. Pickover, Belphegor's Prime: 1000000000000066600000000000001
- Wikipedia, Belphegor's prime
Programs
-
Mathematica
Table[FactorInteger[(10^(n + 3) + 666)*10^(n + 1) + 1][[-1, 1]], {n, 20}] (* T. D. Noe, Nov 25 2013 *)
-
PARI
default(factor_proven,1); Belphegor(k)=(10^(k+3)+666)*10^(k+1)+1; LargestPrimeFactor(k)={local(f);f=factor(k);return(f[#f[,1],1])}; nmax=40; v=vector(nmax); for (n=0,#v-1,v[n+1]=LargestPrimeFactor(Belphegor(n));print(v[n+1]))
Comments