cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A329536 Integer areas of integer-sided triangles where the lengths of two of the sides are cubes.

Original entry on oeis.org

480, 4200, 5148, 7500, 30720, 65520, 268800, 329472, 349920, 480000, 960960, 1684980, 1713660, 1884960, 1966080, 2413320, 2419560, 3061800, 3752892, 4193280, 5467500, 7500000, 8168160, 10022520, 11166960, 17203200, 17915040, 18462300, 21086208, 22394880, 28964040
Offset: 1

Views

Author

Michel Lagneau, Nov 16 2019

Keywords

Comments

Subset of A188158.
The area of the triangle (a,b,c) are given by Heron's formula, A = sqrt(s(s-a)(s-b)(s-c)), where the side lengths are a, b, c and semiperimeter s = (a+b+c)/2.
The areas of the nonprimitive triangles of sides (a*k^3, b*k^3, c*k^3), k = 1,2,... are in the sequence with the value A*k^6.
There may be multiple triangles with the same area (see the table of examples below).

Examples

			The following table gives the initial values of (A, a, b, c):
+--------+------+-------+-------+
|     A  |    a |     b |    c  |
+--------+------+-------+-------+
|    480 |    8 |   123 |   125 |
|   4200 |   70 |   125 |   125 |
|   4200 |  125 |   125 |   240 |
|   5148 |   88 |   125 |   125 |
|   5148 |  125 |   125 |   234 |
|   7500 |  125 |   125 |   150 |
|   7500 |  125 |   125 |   200 |
|  30720 |   64 |   984 |  1000 |
|  65520 |  125 |  2088 |  2197 |
| 268800 |  560 |  1000 |  1000 |
| 268800 | 1000 |  1000 |  1920 |
| 329472 |  704 |  1000 |  1000 |
| 329472 | 1000 |  1000 |  1872 |
| 349920 |  216 |  3321 |  3375 |
.................................
		

Crossrefs

Programs

  • Mathematica
    nn=600;lst={};Do[s=(a^3+b^3+c)/2;If[IntegerQ[s],area2=s (s-a^3)(s-b^3) (s-c);If[0
    				
Showing 1-1 of 1 results.