A232466 Number of dependent sets with largest element n.
0, 0, 1, 2, 4, 10, 20, 44, 93, 198, 414, 864, 1788, 3687, 7541, 15382, 31200, 63191, 127482, 256857, 516404, 1037104, 2080357, 4170283, 8354078, 16728270, 33485553, 67012082, 134083661, 268249350, 536617010, 1073391040, 2147014212, 4294321453, 8589084469, 17178702571, 34358228044, 68717407217, 137436320023, 274874294012, 549751307200, 1099505394507, 2199015662477, 4398035921221, 8796080392378, 17592168222674
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Apr 18 2024: (Start) The a(1) = 0 through a(6) = 10 sets: . . {1,2,3} {1,3,4} {1,4,5} {1,5,6} {1,2,3,4} {2,3,5} {2,4,6} {1,2,4,5} {1,2,3,6} {2,3,4,5} {1,2,5,6} {1,3,4,6} {2,3,5,6} {3,4,5,6} {1,2,3,4,6} {1,2,4,5,6} {2,3,4,5,6} (End)
References
- J. Bourgain, Λ_p-sets in analysis: results, problems and related aspects. Handbook of the geometry of Banach spaces, Vol. I,195-232, North-Holland, Amsterdam, 2001.
Links
- Martin Fuller, C++ program
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i<1, `if`(n=0, {0}, {}), `if`(i*(i+1)/2
p+x^i, b(n+i, i-1) union b(abs(n-i), i-1)))) end: a:= n-> nops(b(n, n-1)): seq(a(n), n=1..15); # Alois P. Heinz, Nov 24 2013 -
Mathematica
b[n_, i_] := b[n, i] = If[i<1, If[n == 0, {0}, {}], If[i*(i+1)/2 < n, {}, b[n, i-1] ~Union~ Map[Function[p, p+x^i], b[n+i, i-1] ~Union~ b[Abs[n-i], i-1]]]]; a[n_] := Length[b[n, n-1]]; Table[Print[a[n]]; a[n], {n, 1, 24}] (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *) biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2]; Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&biqQ[#]&]],{n,10}] (* Gus Wiseman, Apr 18 2024 *)
-
PARI
dep(S,k=0)=if(#S<2,return(if(#S,S[1],0)==k)); my(T=S[1..#S-1]);dep(T,abs(k-S[#S]))||dep(T,k+S[#S]) a(n)=my(S=[1..n-1]);sum(i=1,2^(n-1)-1,dep(vecextract(S,i),n)) \\ Charles R Greathouse IV, Nov 25 2013
-
PARI
a(n)=my(r=0);forsubset(n-1,s,my(t=sum(i=1,#s,s[i])+n);if(t%2==0,my(b=1);for(i=1,#s,b=bitor(b,b<
Martin Fuller, Mar 21 2025
Formula
a(n) < 2^(n-2) because there are 2^(n-1) sets of which half have an even sum. - Martin Fuller, Mar 21 2025
Extensions
a(9)-a(24) from Alois P. Heinz, Nov 24 2013
a(25) from Alois P. Heinz, Sep 30 2014
a(26) from Alois P. Heinz, Sep 17 2022
a(27) onwards from Martin Fuller, Mar 21 2025
Comments