A232500 Oscillating orbitals over n sectors (nonpositive values indicating there exist none).
-1, -1, 0, 0, 2, 10, 10, 70, 42, 378, 168, 1848, 660, 8580, 2574, 38610, 10010, 170170, 38896, 739024, 151164, 3174444, 587860, 13520780, 2288132, 57203300, 8914800, 240699600, 34767720, 1008263880, 135727830, 4207562730, 530365050, 17502046650, 2074316640
Offset: 0
Links
- Peter Luschny, Illustrating swinging orbitals.
Programs
-
Maple
f := (z/(1-4*z^2)-3-1/z+1/z^2)/sqrt(1-4*z^2)-1/z^2+1/z; seq(coeff(series(f, z, n+2), z, n), n=0..19); g := (1+x)*BesselI(0, 2*x)-2*(1+1/x)*BesselI(1, 2*x); seq(n!*coeff(series(g,x,n+2),x,n), n=0..19);
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := sf[n]*(1-2/(Quotient[n, 2]+1)); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 11 2015 *) nxt[{n_,a_}]:={n+1,If[EvenQ[n],a(n+1),a (4(n-1))/((n-3)(n+3))]}; Join[{-1,-1,0,0,2},NestList[nxt,{5,10},40][[;;,2]]] (* Harvey P. Dale, Dec 16 2024 *)
-
PARI
a(n) = n!/(n\2)!^2*(n\2-1)/(n\2+1) \\ Charles R Greathouse IV, Jul 30 2016
-
Sage
def A232500(): r, n = 1, 0 while True: yield r*(n//2-1)/(n//2+1) n += 1 r *= 4/n if is_even(n) else n a = A232500(); [next(a) for i in range(36)]
Formula
O.g.f.: (z/(1-4*z^2) - 3 - 1/z + 1/z^2)/sqrt(1-4*z^2) - 1/z^2 + 1/z.
E.g.f.: (1+x)*BesselI(0, 2*x)-2*(1+1/x)*BesselI(1, 2*x).
a(n) = (n!/k!^2)*(k-1)/(k+1) where k = floor(n/2).
Recurrence: If n > 4 then a(n) = a(n-1)*n if n is odd else a(n-1)*4*(n-2)/((n-4)*(n+2)).
a(n) = A056040(n) * (1 - 2/(floor(n/2) + 1)).
Asymptotic: log(a(n)) ~ (n*log(4) - log(Pi) - (-1)^n*(log(n/2) + 1/(2*n)))/2 + log(1 - 8/(2*n + 3 + (-1)^n)) for n >= 4.
D-finite with recurrence: +(n+2)*a(n) -n*a(n-1) +(-11*n+2)*a(n-2) +(9*n-16)*a(n-3) +20*(2*n-5)*a(n-4) +20*(-n+3)*a(n-5) +48*(-n+5)*a(n-6)=0. - R. J. Mathar, Feb 21 2020
Comments