cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232500 Oscillating orbitals over n sectors (nonpositive values indicating there exist none).

Original entry on oeis.org

-1, -1, 0, 0, 2, 10, 10, 70, 42, 378, 168, 1848, 660, 8580, 2574, 38610, 10010, 170170, 38896, 739024, 151164, 3174444, 587860, 13520780, 2288132, 57203300, 8914800, 240699600, 34767720, 1008263880, 135727830, 4207562730, 530365050, 17502046650, 2074316640
Offset: 0

Views

Author

Peter Luschny, Jan 05 2014

Keywords

Comments

A planar orbital system is a family of concentric circles in a plane divided into n sectors. An orbital is a closed path consisting of arcs on these circles such that at each boundary of a sector the path jumps to the next inner or outer circle. One exception is allowed: if n is odd the path might continue on the same circle, but just once. After fixing one circle as the central circle there are three types of orbitals: a high orbital is always above the central circle, a low orbital is always below the central circle, and an oscillating orbital which is neither a high nor a low orbital. The number of all orbitals is A056040(n), the number of high orbitals, which is the same as the number of low orbitals, is A057977(n), and the number of oscillating orbitals is this a(n) (for n >= 4).

Crossrefs

Programs

  • Maple
    f := (z/(1-4*z^2)-3-1/z+1/z^2)/sqrt(1-4*z^2)-1/z^2+1/z;
    seq(coeff(series(f, z, n+2), z, n), n=0..19);
    g := (1+x)*BesselI(0, 2*x)-2*(1+1/x)*BesselI(1, 2*x);
    seq(n!*coeff(series(g,x,n+2),x,n), n=0..19);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := sf[n]*(1-2/(Quotient[n, 2]+1)); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 11 2015 *)
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a(n+1),a (4(n-1))/((n-3)(n+3))]}; Join[{-1,-1,0,0,2},NestList[nxt,{5,10},40][[;;,2]]] (* Harvey P. Dale, Dec 16 2024 *)
  • PARI
    a(n) = n!/(n\2)!^2*(n\2-1)/(n\2+1) \\ Charles R Greathouse IV, Jul 30 2016
  • Sage
    def A232500():
        r, n = 1, 0
        while True:
            yield r*(n//2-1)/(n//2+1)
            n += 1
            r *= 4/n if is_even(n) else n
    a = A232500(); [next(a) for i in range(36)]
    

Formula

O.g.f.: (z/(1-4*z^2) - 3 - 1/z + 1/z^2)/sqrt(1-4*z^2) - 1/z^2 + 1/z.
E.g.f.: (1+x)*BesselI(0, 2*x)-2*(1+1/x)*BesselI(1, 2*x).
a(n) = (n!/k!^2)*(k-1)/(k+1) where k = floor(n/2).
Recurrence: If n > 4 then a(n) = a(n-1)*n if n is odd else a(n-1)*4*(n-2)/((n-4)*(n+2)).
a(n) = A056040(n) * (1 - 2/(floor(n/2) + 1)).
a(n) = A056040(n) - 2*A057977(n).
Asymptotic: log(a(n)) ~ (n*log(4) - log(Pi) - (-1)^n*(log(n/2) + 1/(2*n)))/2 + log(1 - 8/(2*n + 3 + (-1)^n)) for n >= 4.
D-finite with recurrence: +(n+2)*a(n) -n*a(n-1) +(-11*n+2)*a(n-2) +(9*n-16)*a(n-3) +20*(2*n-5)*a(n-4) +20*(-n+3)*a(n-5) +48*(-n+5)*a(n-6)=0. - R. J. Mathar, Feb 21 2020