cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232529 Least positive integer m such that for all primes p where p and p-n are quadratic residues (mod 4*n), (m^2)*p can be written as x^2+n*y^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 3, 1, 4, 2, 1, 5, 2, 2, 1, 3, 4, 1, 9, 1, 2, 3, 1, 5, 8, 1, 5, 3, 2, 2, 3, 3, 4, 3, 1, 1, 6, 1, 5, 9, 3, 2, 3, 5, 2, 6, 5, 1, 12, 1, 7, 9, 2, 4, 3, 1, 8, 3, 3, 7, 6, 2, 1, 9, 4, 1, 15, 3, 2, 3, 1, 25, 8, 2, 7, 7, 2, 2, 15
Offset: 1

Views

Author

V. Raman, Nov 25 2013

Keywords

Comments

If n is a convenient number (A000926), then a(n) = 1.
m is also the lowest nonzero integer such that m^2 can be generated by using all the inequivalent primitive quadratic forms of discriminant = -4n.

Examples

			For n = 59, all primes p such that p such that p is a quadratic residue (mod 4*n) and p-n is a quadratic residue (mod 4*n) are either of the form x^2+59*y^2 or 4*x^2+2*x*y+15*y^2 or 3*x^2+2*x*y+20*y^2 or 5*x^2+2*x*y+12*y^2 or 7*x^2+4*x*y+9*y^2.
We have (6^2)*(x^2+59*y^2) = (6*x)^2+59*(6*y)^2,
(6^2)*(4*x^2+2*x*y+15*y^2) = (12*x+3*y)^2 + 59*(3*y)^2,
(6^2)*(7*x^2+4*x*y+9*y^2) = (4*x+18*y)^2 + 59*(2*x)^2,
(6^2)*(3*x^2+2*x*y+20*y^2) = (7*x+22*y)^2 + 59*(x-2*y)^2,
(6^2)*(5*x^2+2*x*y+12*y^2) = (11*x+14*y)^2 + 59*(x-2*y)^2.
So, m = 6 satisfies this condition for n = 59: for all primes p such that p is a quadratic residue (mod 4*n) and p-n is a quadratic residue (mod 4*n), (m^2)*p can be written as x^2+n*y^2.
And m = 6 is the smallest value of m to satisfy this condition. So, a(59) = 6.
		

Crossrefs

Formula

a(n)=sqrt(A232530(n)).