A232466
Number of dependent sets with largest element n.
Original entry on oeis.org
0, 0, 1, 2, 4, 10, 20, 44, 93, 198, 414, 864, 1788, 3687, 7541, 15382, 31200, 63191, 127482, 256857, 516404, 1037104, 2080357, 4170283, 8354078, 16728270, 33485553, 67012082, 134083661, 268249350, 536617010, 1073391040, 2147014212, 4294321453, 8589084469, 17178702571, 34358228044, 68717407217, 137436320023, 274874294012, 549751307200, 1099505394507, 2199015662477, 4398035921221, 8796080392378, 17592168222674
Offset: 1
From _Gus Wiseman_, Apr 18 2024: (Start)
The a(1) = 0 through a(6) = 10 sets:
. . {1,2,3} {1,3,4} {1,4,5} {1,5,6}
{1,2,3,4} {2,3,5} {2,4,6}
{1,2,4,5} {1,2,3,6}
{2,3,4,5} {1,2,5,6}
{1,3,4,6}
{2,3,5,6}
{3,4,5,6}
{1,2,3,4,6}
{1,2,4,5,6}
{2,3,4,5,6}
(End)
- J. Bourgain, Λ_p-sets in analysis: results, problems and related aspects. Handbook of the geometry of Banach spaces, Vol. I,195-232, North-Holland, Amsterdam, 2001.
A237258 (aerated) counts biquanimous strict partitions, ranks
A357854.
-
b:= proc(n, i) option remember; `if`(i<1, `if`(n=0, {0}, {}),
`if`(i*(i+1)/2 p+x^i,
b(n+i, i-1) union b(abs(n-i), i-1))))
end:
a:= n-> nops(b(n, n-1)):
seq(a(n), n=1..15); # Alois P. Heinz, Nov 24 2013
-
b[n_, i_] := b[n, i] = If[i<1, If[n == 0, {0}, {}], If[i*(i+1)/2 < n, {}, b[n, i-1] ~Union~ Map[Function[p, p+x^i], b[n+i, i-1] ~Union~ b[Abs[n-i], i-1]]]]; a[n_] := Length[b[n, n-1]]; Table[Print[a[n]]; a[n], {n, 1, 24}] (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)
biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&biqQ[#]&]],{n,10}] (* Gus Wiseman, Apr 18 2024 *)
-
dep(S,k=0)=if(#S<2,return(if(#S,S[1],0)==k)); my(T=S[1..#S-1]);dep(T,abs(k-S[#S]))||dep(T,k+S[#S])
a(n)=my(S=[1..n-1]);sum(i=1,2^(n-1)-1,dep(vecextract(S,i),n)) \\ Charles R Greathouse IV, Nov 25 2013
-
a(n)=my(r=0);forsubset(n-1,s,my(t=sum(i=1,#s,s[i])+n);if(t%2==0,my(b=1);for(i=1,#s,b=bitor(b,b<Martin Fuller, Mar 21 2025
A164934
Number of different ways to select 3 disjoint subsets from {1..n} with equal element sum.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 8, 22, 63, 157, 502, 1562, 4688, 15533, 50953, 165054, 562376, 1911007, 6467143, 22447463, 78021923, 271410289, 957082911, 3384587525, 11998851674, 42876440587, 153684701645, 552421854011, 1995875594696, 7231871165277, 26274832876337
Offset: 1
-
b:= proc(n, k, i) option remember; local m;
m:= i*(i+1)/2;
if k>n then b(k, n, i)
elif k>=0 and n+k>m or k<0 and n-2*k>m then 0
elif [n, k, i] = [0, 0, 0] then 1
else b(n, k, i-1)+b(n+i, k+i, i-1)+b(n-i, k, i-1)+b(n, k-i, i-1)
fi
end:
a:= proc(n) option remember;
`if`(n>2, b(n, n, n-1)/2+ a(n-1), 0)
end:
seq(a(n), n=1..20);
-
b[n_, k_, i_] := b[n, k, i] = Module[{m = i*(i+1)/2}, Which[k>n , b[k, n, i], k >= 0 && n+k>m || k<0 && n-2*k > m, 0, {n, k, i} == {0, 0, 0}, 1, True, b[n, k, i-1] + b[n+i, k+i, i-1] + b[n-i, k, i-1] + b[n, k-i, i-1]]]; a[n_] := a[n] = If[n>2, b[n, n, n-1]/2 + a[n-1], 0]; Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
A248112
Number T(n,k) of subsets of {1,...,n} containing n and having at least one set partition into k blocks with equal element sum; triangle T(n,k), n>=1, 1<=k<=floor((n+1)/2), read by rows.
Original entry on oeis.org
1, 2, 4, 1, 8, 2, 16, 4, 1, 32, 10, 2, 64, 20, 5, 1, 128, 44, 12, 2, 256, 93, 29, 6, 1, 512, 198, 63, 14, 2, 1024, 414, 146, 37, 7, 1, 2048, 864, 329, 88, 16, 2, 4096, 1788, 722, 218, 49, 8, 1, 8192, 3687, 1613, 515, 118, 19, 2, 16384, 7541, 3505, 1226, 313, 62, 9, 1
Offset: 1
T(7,3) = 5: {2,3,4,5,7}-> 25/34/7, {1,3,4,6,7}-> 16/34/7, {1,2,5,6,7}-> 16/25/7, {1,2,3,5,6,7}-> 17/26/35, {2,3,4,5,6,7}-> 27/36/45.
T(8,4) = 2: {1,2,3,5,6,7,8}-> 17/26/35/8, {1,2,3,4,5,6,7,8}-> 18/27/36/45.
T(9,5) = 1: {1,2,3,5,6,7,8,9}-> 18/27/36/45/9.
Triangle T(n,k) begins:
01 : 1;
02 : 2;
03 : 4, 1;
04 : 8, 2;
05 : 16, 4, 1;
06 : 32, 10, 2;
07 : 64, 20, 5, 1;
08 : 128, 44, 12, 2;
09 : 256, 93, 29, 6, 1;
10 : 512, 198, 63, 14, 2;
11 : 1024, 414, 146, 37, 7, 1;
12 : 2048, 864, 329, 88, 16, 2;
-
b:= proc(l, i) option remember; local k, r, j;
k, r:= nops(l), {};
if i*(i+1)/2 < l[-1]*k-add(j, j=l) then r
elif i=0 then {r}
else for j to k do r:= r union map(y->y union {i}, b((p->
map(x->x-p[1], p))(sort(subsop(j=l[j]+i, l))), i-1))
od;
r union b(l, i-1)
fi
end:
A:= (n, k)-> `if`(k=1, 2^(n-1), nops(b([0$(k-1), n], n-1))):
seq(seq(A(n, k), k=1..iquo(n+1, 2)), n=1..15);
-
b[l_, i_] := b[l, i] = Module[{k, r, j}, {k, r} = {Length[l], {}}; Which[ i*(i+1)/2 < l[[-1]]*k - Total[l], r, i == 0, {r}, True, For[j = 1, j <= k, j++, r = r ~Union~ Map[# ~Union~ {i}&, b[Function[p, Map[#-p[[1]]&, p] ][Sort[ReplacePart[l, j -> l[[j]]+i]]], i-1]]]; r ~Union~ b[l, i-1]]]; A[n_, k_] := If[k==1, 2^(n-1), Length[b[Append[Array[0&, (k-1)], n], n-1] ]]; Table[A[n, k], {n, 1, 15}, {k, 1, Quotient[n+1, 2]}] // Flatten (* Jean-François Alcover, Feb 03 2017, Translated from Maple *)
Showing 1-3 of 3 results.
Comments