A232535 Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.
1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0
Examples
Triangle begins: 1 1, 2 1, 8, 3 1, 18, 25, 4 1, 32, 98, 56, 5 1, 50, 270, 336, 105, 6 1, 72, 605, 1320, 891, 176, 7 1, 98, 1183, 4004, 4719, 2002, 273, 8 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
Crossrefs
Programs
-
Maple
T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k); seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
-
Mathematica
Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)
Formula
G.f.: (1-x)/(1-2*x*(1+y)+x^2*(1-y)^2).
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)+2*T(n-2,k-1)-T(n-2,k)-T(n-2,k-2), T(0,0)=T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n.
T(n,k) = binomial(2*n,2*k)*(2*n+1-k)/(2*n+1-2*k). - Peter Luschny, Nov 26 2013
Comments