A232545 Number of Euler tours of the complete digraph on n vertices.
1, 3, 256, 972000, 247669456896, 6022251970560000000, 18932148110851728998400000000, 10036271333655026636037644353536000000000, 1135547314049215265041779022180122624000000000000000000, 33878761698754076709292639330840075944838638855101181276979200000000000
Offset: 2
Examples
For n = 2, there is one Euler tour, (1,2,1), since (1,2,1) is cyclically equivalent to (2,1,2). For n = 3, there are three Euler tours: (1,2,1,3,2,3,1), (1,2,3,1,3,2,1), (1,2,3,2,1,3,1).
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..30
- Wikipedia, BEST Theorem, a formula for counting Euler tours in digraphs.
Programs
-
PARI
a(n) = n^(n-2)*(n-2)!^n \\ Andrew Howroyd, Dec 28 2021
Formula
a(n) = n^(n-2)*(n-2)!^n, by the "BEST Theorem". - James Thompson, Jul 18 2017, Günter Rote, Dec 09 2021
Extensions
a(5) corrected by Tomas Boothby, Dec 03 2013
Terms a(8) and beyond from Andrew Howroyd, Dec 28 2021