cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232560 Inverse permutation of the sequence of positive integers at A232559.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 7, 11, 10, 16, 9, 14, 13, 21, 12, 19, 18, 29, 17, 27, 26, 42, 15, 24, 23, 37, 22, 35, 34, 55, 20, 32, 31, 50, 30, 48, 47, 76, 28, 45, 44, 71, 43, 69, 68, 110, 25, 40, 39, 63, 38, 61, 60, 97, 36, 58, 57, 92, 56, 90, 89, 144, 33, 53, 52
Offset: 1

Views

Author

Clark Kimberling, Nov 26 2013

Keywords

Crossrefs

Programs

  • Maple
    g:= proc() local l, s; l, s:= [1], {1}:
          proc(n) option remember; local i, r; r:= l[1];
            l:= subsop(1=NULL, l);
            for i in [1+r, r+r] do if not i in s then
              l, s:=[l[], i], s union {i} fi
            od; r
          end
        end():
    a:= proc() local t, a; t, a:= 0, proc() -1 end;
          proc(n) local h;
            while a(n) < 0 do
              t:= t+1; h:= g(t);
              if a(h) < 0 then a(h):= t fi
            od; a(n)
          end
        end():
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 14 2021
  • Mathematica
    z = 12; g[1] = {1}; g[2] = {2}; g[n_] := Riffle[g[n - 1] + 1, 2 g[n - 1]]; j[2] = Join[g[1], g[2]]; j[n_] := Join[j[n - 1], g[n]]; g1[n_] := DeleteDuplicates[DeleteCases[g[n], Alternatives @@ j[n - 1]]]; g1[1] = g[1]; g1[2] = g[2]; t = Flatten[Table[g1[n], {n, 1, z}]]  (* A232559 *)
    Table[Length[g1[n]], {n, 1, z}] (* Fibonacci numbers *)
    t1 = Flatten[Table[Position[t, n], {n, 1, 200}]]  (* A232560 *)