cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232605 Number of compositions of 2n into parts with multiplicity <= n.

Original entry on oeis.org

1, 1, 7, 26, 114, 459, 1892, 7660, 31081, 125464, 506025, 2036706, 8189555, 32894825, 132033140, 529614616, 2123365038, 8509634259, 34092146068, 136546197412, 546774790297, 2189060331762, 8762770476060, 35072837719356, 140363923730474, 561697985182654
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2013

Keywords

Comments

a(n) = A243081(2n,n) = Sum_{i=0..n} A242447(2n,i).

Examples

			a(1) = 1: [2].
a(2) = 7: [4], [3,1], [2,2], [1,3], [2,1,1], [1,2,1], [1,1,2].
a(3) = 26: [6], [5,1], [4,2], [3,3], [2,4], [1,5], [3,2,1], [2,3,1], [1,4,1], [3,1,2], [2,2,2], [1,3,2], [2,1,3], [1,2,3], [1,1,4], [4,1,1], [2,1,2,1], [1,2,2,1], [1,1,3,1], [3,1,1,1], [2,2,1,1], [1,1,2,2], [1,1,1,3], [1,3,1,1], [2,1,1,2], [1,2,1,2].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n<5, [1, 1, 7, 26, 114][n+1],
          (2*(n-1)*(11092322562903*n^3 -66692687083623*n^2
           +117736395568913*n -51473509383358) *a(n-1)
          -(17386283060104*n^4 -178154697569624*n^3 +652039987731328*n^2
           -984836231488344*n +485931992440304) *a(n-2)
          -(89948343833304*n^4 -664733317200192*n^3 +1662507315916082*n^2
           -1594206267597886*n +485625773146800) *a(n-3)
          +(92866735410328*n^4 -1047423564207444*n^3 +4160804083968884*n^2
           -6634447008138888*n +3217864137236880) *a(n-4)
          -16*(n-5)*(2*n-9)*(310469340359*n^2 -847919784312*n
           +494768703748) *a(n-5)) / (5*n*(n-1)*
          (681426847222*n^2 -3587414825361*n +4663189129034)))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j, k]/j!, {j, 0, Min[n/i, k]}]]];
    A[n_, k_] := If[k >= n, If[n == 0, 1, 2^(n - 1)], b[n, n, 0, k]];
    a[n_] := A[2 n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 31 2017, after Alois P. Heinz *)

Formula

Recurrence: 5*(n-2)*(n-1)*n*(1258*n^4 - 11230*n^3 + 37013*n^2 - 53645*n + 28764)*a(n) = 2*(n-2)*(n-1)*(17612*n^5 - 159736*n^4 + 538872*n^3 - 824111*n^2 + 541051*n - 107568)*a(n-1) - 4*(n-2)*(5032*n^5 - 44925*n^4 + 134332*n^3 - 137541*n^2 - 6614*n + 52596)*a(n-2) - 2*(83028*n^7 - 1074550*n^6 + 5758938*n^5 - 16516699*n^4 + 27297714*n^3 - 25934731*n^2 + 13070460*n - 2661120)*a(n-3) + 8*(n-4)*(n-1)*(2*n-7)*(1258*n^4 - 6198*n^3 + 10871*n^2 - 8277*n + 2160)*a(n-4). - Vaclav Kotesovec, Nov 27 2013
a(n) ~ 2^(2*n-1). - Vaclav Kotesovec, Nov 27 2013