A232616 Least positive integer m such that {2^k - k: k = 1,...,m} contains a complete system of residues modulo n.
1, 2, 4, 5, 10, 6, 14, 10, 12, 18, 29, 13, 33, 22, 40, 19, 38, 18, 58, 21, 36, 58, 75, 26, 60, 66, 40, 64, 195, 53, 87, 36, 158, 67, 130, 37, 133, 94, 90, 42, 95, 42, 105, 112, 112, 140, 247, 51, 122, 94, 119, 120, 311, 54, 126, 90, 184, 223, 264, 61
Offset: 1
Keywords
Examples
a(3) = 4 since {2 - 1, 2^2 - 2, 2^3 - 3} = {1, 2, 5} does not contain a complete system of residues mod 3, but {2 - 1, 2^2 - 2, 2^3 - 3, 2^4 - 4} = {1, 2, 5, 12} does.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..700 from Zhi-Wei Sun)
- Zhi-Wei Sun, On a^n + b*n modulo m, preprint, arXiv:1312.1166 [math.NT], 2013-2014.
Programs
-
Mathematica
L[m_,n_]:=Length[Union[Table[Mod[2^k-k,n],{k,1,m}]]] Do[Do[If[L[m,n]==n,Print[n," ",m];Goto[aa]],{m,1,n^2}]; Print[n," ",0];Label[aa];Continue,{n,1,60}]
Comments