cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A232618 a(n) = (2n)!! mod (2n-1)!! where k!! = A006882(k).

Original entry on oeis.org

0, 2, 3, 69, 60, 4500, 104580, 186795, 13497435, 442245825, 13003053525, 64585694250, 3576632909850, 147580842959550, 5708173568847750, 27904470362393625, 2292043480058957625, 126842184377462428875, 6371504674680470700375, 312265748715684068930625
Offset: 1

Views

Author

Alex Ratushnyak, Nov 27 2013

Keywords

Comments

(2n)!! is the product of first n even numbers, (2n-1)!! is the product of first n odd numbers.

Examples

			a(3) = A006882(6) mod A006882(5) = 2*4*6 mod 1*3*5 = 48 mod 15 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[(2n)!!,(2n-1)!!],{n,20}] (* Harvey P. Dale, Sep 23 2020 *)
  • Python
    o=e=1
    for n in range(1,99,2):
      o*=n
      e*=n+1
      print(str(e%o), end=',')

Formula

a(n) = A006882(2*n) mod A006882(2*n-1).

A306184 a(n) = (2n+1)!! mod (2n)!! where k!! = A006882(k).

Original entry on oeis.org

1, 7, 9, 177, 2715, 42975, 91665, 3493665, 97345395, 2601636975, 70985324025, 57891366225, 9411029102475, 476966861546175, 20499289200014625, 847876038362978625, 35160445175104123875, 1487419121780448231375, 945654757149212735625, 357657177058846280240625
Offset: 1

Views

Author

Alex Ratushnyak, Jan 27 2019

Keywords

Comments

a(n) is divisible by A049606(n). - Robert Israel, Jan 28 2019

Examples

			a(3) = A006882(7) mod A006882(6) = (7*5*3) mod (6*4*2) = 105 mod 48 = 9.
		

Crossrefs

Programs

  • Maple
    f:= n -> doublefactorial(2*n+1) mod doublefactorial(2*n):
    map(f, [$1..40]); # Robert Israel, Jan 28 2019
  • Mathematica
    Mod[#[[2]],#[[1]]]&/@Partition[Range[2,42]!!,2] (* Harvey P. Dale, May 29 2025 *)
  • Python
    o=e=1
    for n in range(2, 99, 2):
      o*=n+1
      e*=n
      print(o%e, end=', ')

Formula

a(n) = A006882(2*n+1) mod A006882(2*n).

A306185 a(n) = (2n+1)!! + (2n)!! where k!! = A006882(k).

Original entry on oeis.org

5, 23, 153, 1329, 14235, 181215, 2672145, 44781345, 840523635, 17465201775, 397983749625, 9867844134225, 264469801070475, 7618612476650175, 234748657653134625, 7703855828862818625, 268263758052098683875, 9879138385352252391375, 383608053176023482431625, 15664153113813817068080625
Offset: 1

Views

Author

Alex Ratushnyak, Jan 27 2019

Keywords

Examples

			a(3) = A006882(7) + A006882(6) = (7*5*3) + (6*4*2) = 105 + 48 = 153.
		

Crossrefs

Programs

  • Python
    o=e=1
    for n in range(2, 99, 2):
      o*=n+1
      e*=n
      print(o+e, end=', ')

Formula

a(n) = A006882(2*n+1) + A006882(2*n).
Showing 1-3 of 3 results.