cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A232697 Number of partitions of 2n into parts such that the largest multiplicity equals n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 8, 9, 13, 15, 22, 25, 35, 42, 56, 67, 89, 106, 138, 166, 211, 254, 321, 384, 479, 575, 709, 848, 1040, 1239, 1508, 1795, 2168, 2574, 3095, 3661, 4379, 5171, 6154, 7246, 8592, 10088, 11915, 13960, 16425, 19197, 22520, 26253, 30702, 35718
Offset: 0

Views

Author

Alois P. Heinz, Nov 27 2013

Keywords

Examples

			a(1) = 1: [2].
a(2) = 2: [2,2], [2,1,1].
a(3) = 2: [2,2,2], [3,1,1,1].
a(4) = 3: [2,2,2,2], [2,2,1,1,1,1], [4,1,1,1,1].
a(5) = 3: [2,2,2,2,2], [3,2,1,1,1,1,1], [5,1,1,1,1,1].
a(6) = 5: [2,2,2,2,2,2], [2,2,2,1,1,1,1,1,1], [3,3,1,1,1,1,1,1], [4,2,1,1,1,1,1,1], [6,1,1,1,1,1,1].
		

Crossrefs

Partial sums give A133041.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+1, min(k,
           iquo(n-i*j, i+1))), j=0..min(n/i, k))))
        end:
    a:= n-> b(2*n, 1, n)-`if`(n=0, 0, b(2*n, 1, n-1)):
    seq(a(n), n=0..60);
  • Mathematica
    CoefficientList[x/(1-x) + (1-x)/QPochhammer[x] + O[x]^60, x] (* Jean-François Alcover, Dec 18 2016 *)

Formula

G.f.: x/(1-x) + Product_{k>=2} 1/(1-x^k).
a(0) = 1, a(n) = 1 + A002865(n) = 1 + A000041(n)-A000041(n-1) for n>0.
a(n) = A091602(2n,n) = A096144(2n,n).
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)). - Vaclav Kotesovec, Oct 25 2018

A061199 Upper right triangle read by columns where T(n,k), with k >= n, is the number of partitions of k where no part appears more than n times; also partitions of k where no parts are multiples of (n+1).

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 2, 3, 0, 2, 4, 4, 5, 0, 3, 5, 6, 6, 7, 0, 4, 7, 9, 10, 10, 11, 0, 5, 9, 12, 13, 14, 14, 15, 0, 6, 13, 16, 19, 20, 21, 21, 22, 0, 8, 16, 22, 25, 27, 28, 29, 29, 30, 0, 10, 22, 29, 34, 37, 39, 40, 41, 41, 42, 0, 12, 27, 38, 44, 49, 51, 53, 54, 55, 55, 56, 0, 15, 36
Offset: 0

Views

Author

Henry Bottomley, Apr 20 2001

Keywords

Examples

			T(2,4) = 4 since the possible partitions of 4 are on the first definition (no term more than twice) 1+1+2, 2+2, 1+3, or 4 and on the second definition (no term a multiple of 3) 1+1+1+1, 1+1+2, 2+2, or 4.
Triangle T(n,k) begins:
1, 0, 0, 0, 0, 0,  0,  0,  0,  0, ...
   1, 1, 2, 2, 3,  4,  5,  6,  8, ...
      2, 2, 4, 5,  7,  9, 13, 16, ...
         3, 4, 6,  9, 12, 16, 22, ...
            5, 6, 10, 13, 19, 25, ...
               7, 10, 14, 20, 27, ...
                  11, 14, 21, 28, ...
                      15, 21, 29, ...
                          22, 29, ...
                              30, ...
		

Crossrefs

Rows effectively include A000007, A000009, A000726, A001935, A035959.
Main diagonal is A000041.
A061198 is the same table but includes cases where n>k.
T(n,2*n) gives: A232623.

Programs

  • Maple
    b:= proc(n, i, k) option remember;
          `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k), j=0..min(n/i, k))))
        end:
    T:= (n, k)-> b(k$2, n):
    seq(seq(T(n, k), n=0..k), k=0..12);  # Alois P. Heinz, Nov 27 2013
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1, k], {j, 0, Min[n/i, k]}]]]; T[n_, k_] := b[k, k, n]; Table[Table[T[n, k], {n, 0, k}], {k, 0, 12}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

A232605 Number of compositions of 2n into parts with multiplicity <= n.

Original entry on oeis.org

1, 1, 7, 26, 114, 459, 1892, 7660, 31081, 125464, 506025, 2036706, 8189555, 32894825, 132033140, 529614616, 2123365038, 8509634259, 34092146068, 136546197412, 546774790297, 2189060331762, 8762770476060, 35072837719356, 140363923730474, 561697985182654
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2013

Keywords

Comments

a(n) = A243081(2n,n) = Sum_{i=0..n} A242447(2n,i).

Examples

			a(1) = 1: [2].
a(2) = 7: [4], [3,1], [2,2], [1,3], [2,1,1], [1,2,1], [1,1,2].
a(3) = 26: [6], [5,1], [4,2], [3,3], [2,4], [1,5], [3,2,1], [2,3,1], [1,4,1], [3,1,2], [2,2,2], [1,3,2], [2,1,3], [1,2,3], [1,1,4], [4,1,1], [2,1,2,1], [1,2,2,1], [1,1,3,1], [3,1,1,1], [2,2,1,1], [1,1,2,2], [1,1,1,3], [1,3,1,1], [2,1,1,2], [1,2,1,2].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n<5, [1, 1, 7, 26, 114][n+1],
          (2*(n-1)*(11092322562903*n^3 -66692687083623*n^2
           +117736395568913*n -51473509383358) *a(n-1)
          -(17386283060104*n^4 -178154697569624*n^3 +652039987731328*n^2
           -984836231488344*n +485931992440304) *a(n-2)
          -(89948343833304*n^4 -664733317200192*n^3 +1662507315916082*n^2
           -1594206267597886*n +485625773146800) *a(n-3)
          +(92866735410328*n^4 -1047423564207444*n^3 +4160804083968884*n^2
           -6634447008138888*n +3217864137236880) *a(n-4)
          -16*(n-5)*(2*n-9)*(310469340359*n^2 -847919784312*n
           +494768703748) *a(n-5)) / (5*n*(n-1)*
          (681426847222*n^2 -3587414825361*n +4663189129034)))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_, p_, k_] := b[n, i, p, k] = If[n == 0, p!, If[i < 1, 0, Sum[b[n - i*j, i - 1, p + j, k]/j!, {j, 0, Min[n/i, k]}]]];
    A[n_, k_] := If[k >= n, If[n == 0, 1, 2^(n - 1)], b[n, n, 0, k]];
    a[n_] := A[2 n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 31 2017, after Alois P. Heinz *)

Formula

Recurrence: 5*(n-2)*(n-1)*n*(1258*n^4 - 11230*n^3 + 37013*n^2 - 53645*n + 28764)*a(n) = 2*(n-2)*(n-1)*(17612*n^5 - 159736*n^4 + 538872*n^3 - 824111*n^2 + 541051*n - 107568)*a(n-1) - 4*(n-2)*(5032*n^5 - 44925*n^4 + 134332*n^3 - 137541*n^2 - 6614*n + 52596)*a(n-2) - 2*(83028*n^7 - 1074550*n^6 + 5758938*n^5 - 16516699*n^4 + 27297714*n^3 - 25934731*n^2 + 13070460*n - 2661120)*a(n-3) + 8*(n-4)*(n-1)*(2*n-7)*(1258*n^4 - 6198*n^3 + 10871*n^2 - 8277*n + 2160)*a(n-4). - Vaclav Kotesovec, Nov 27 2013
a(n) ~ 2^(2*n-1). - Vaclav Kotesovec, Nov 27 2013

A364245 Number of parts in all partitions of 2n into parts with multiplicity <= n.

Original entry on oeis.org

0, 1, 8, 24, 65, 150, 330, 657, 1274, 2338, 4172, 7203, 12171, 20045, 32474, 51623, 80867, 124841, 190406, 286857, 427758, 631367, 923544, 1339226, 1926798, 2751094, 3900931, 5494411, 7690923, 10701618, 14808183, 20380969, 27910066, 38035633, 51597166, 69685656
Offset: 0

Views

Author

Alois P. Heinz, Jul 15 2023

Keywords

Examples

			a(2) = 8 = 3 + 2 + 2 + 1: [2,1,1], [2,2], [3,1], [4].
		

Crossrefs

Programs

  • Maple
    a:= proc(k) option remember; local b; b:=
          proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
            add((l-> l+[0, l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, k))))
          end: b(2*k$2)[2]
        end:
    seq(a(n), n=0..37);

Formula

a(n) = A210485(2n,n).
Showing 1-4 of 4 results.