A232629 Coefficients of the algebraic number 2*sin(4*Pi/n) in the power basis of Q(2*cos(Pi/q(2,n))), with q(2,n) = A232625(n), n >= 1.
0, 0, 0, -1, 0, 0, -3, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, -3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, -5, 0, 1, 0, 0, 0, 0, 0, 0, 0, -3, 0, 1, 0, 0, 0, -7, 0, 14, 0, -7, 0, 1, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, -5, 0, 1, 0, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, 0, 0, 0, 0, 0, 0, 0, -3, 0, 1
Offset: 1
Examples
The table a(n,m) begins (the trailing zeros are needed to have the correct degree A232626(n) in Q(rho(q(2,n)))) ----------------------------------------------------------------- n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ... 1: 0 2: 0 3: 0 -1 4: 0 5: 0 -3 0 1 6: 0 1 7: 0 1 0 0 0 0 8: 2 9: 0 1 0 0 0 0 10: 0 1 0 0 11: 0 -3 0 1 0 0 0 0 0 0 12: 0 1 13: 0 5 0 -5 0 1 0 0 0 0 0 0 14: 0 -3 0 1 0 0 15: 0 -7 0 14 0 -7 0 1 16: 0 1 17: 0 9 0 -30 0 27 0 -9 0 1 0 0 0 0 0 0 18: 0 5 0 -5 0 1 19: 0 -11 0 55 0 -77 0 44 0 -11 0 1 0 0 0 0 0 0 20: 0 -3 0 1 ... n=1: 2*sin(Pi*4/1) = 0. R(p(2,1), x) = R(7, x) = -7*x + 14*x^3 -7*x^5 + x^7. C(q(2,1), x) = C(2, x) = x, hence R(7, x) (mod C(2, x)) == 0, and with A232626(1) = 1, a(1,0) = 0.n=7: p(2,7) = A231190(7) = 1, q(2,7) = A232625(7) = 14. 2*sin(Pi*4/7) = R(1, x) = x = rho(14) := 2*cos(Pi/14). C(14, x) of degree 6 does not apply here. A232626(7) = 6, hence the row n=7 is 0 1 0 0 0 0. n=9: p(2,9) = 1, q(2,9) = 18. 2*sin(Pi*4/9) = R(1, x) = x = rho(18) = 2*cos(Pi/18). C(18, x) with degree 6 is not needed here. A232626(9) = 6, hence row n=9 is also 0 1 0 0 0 0. n=8: this row with entry 2 coincides with row n=4 of A231189. n=17: row length A232626(17) = 16; p(2,17) = 9; C(34, x) has degree 16, therefore the R(9, x) coefficients produce here the first 10 entries for row n=17: 0 9 0 -30 0 27 0 -9 0 1, followed by 6 zeros, and 2*sin(Pi*4/17) = 9*rho(34) - 30*rho(34)^3 + 27*rho(34)^5 - 9*rho(34)^7 + 1*rho(34)^9, with rho(34) = 2*cos(Pi/34).
Comments