cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232667 Primes p such that the p-th odious number is prime; odious primes p such that 2p-1 is prime.

Original entry on oeis.org

2, 7, 19, 31, 37, 79, 97, 157, 199, 211, 229, 271, 307, 331, 367, 379, 439, 499, 577, 601, 607, 661, 727, 829, 877, 967, 997, 1009, 1069, 1171, 1279, 1459, 1531, 1609, 1627, 1657, 1759, 1867, 2011, 2029, 2131, 2137, 2311, 2551, 2557, 3037, 3061, 3109, 3169, 3181
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 27 2013

Keywords

Comments

From Antti Karttunen, Nov 29 & 30 2013: (Start)
This sequence is the intersection of A005382 and A027697.
Proof:
A000069(n) reduces according to the bit parity of n-1 as follows:
A000069(n) = 2n - 2 when n-1 is odious.
A000069(n) = 2n - 1 when n-1 is evil.
which means that no prime in this sequence can be evil, as then p-1 would be an odious number (true for all odd primes) and A000069(p) would be 2(p-1) which obviously cannot be a prime, contradicting the requirement. Thus all primes present must belong to the set of odious primes, A027697.
As each prime p here is thus odious, it means that each p-1 is an evil number (A001969), and thus A000069(p) = 2p-1. And the stipulation that it also must be prime, is just what is required from the terms of A005382. Thus this sequence contains exactly those primes that occur in both A005382 and A027697.
Equally: this is the intersection of A000069 and A005382, thus prime p occurs here iff A000120(p) is odd and 2p-1 is prime also.
Also, apart from the first term (2), all the primes (2*a(n))-1 are also odious. This follows because for any odd number k, A000120(2k-1) = A000120(k).
(End)

Examples

			7 is a prime and A000069(7) = 13, a prime also, thus 7 is in this sequence.
19 is a prime and A000069(19) = 37, a prime also, thus 19 is in this sequence.
Alternatively:
7 is a prime, 2*7-1 = 13 is also prime, and when written in binary, 7 = '111', with an odd number of 1-bits. Thus 7 is included in this sequence.
The next time this happens, is for 19, as it is a prime, 2*19-1 = 37 is also prime, and when written in binary, 19 = '10011', also has on odd number of 1-bits.
		

Crossrefs

Extensions

Edited and erroneous terms removed by Antti Karttunen, Nov 29-30 2013