cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232668 Natural numbers that are not (primes, 11-smooth, perfect powers or base-10 palindromes).

Original entry on oeis.org

26, 34, 38, 39, 46, 51, 52, 57, 58, 62, 65, 68, 69, 74, 76, 78, 82, 85, 86, 87, 91, 92, 93, 94, 95, 102, 104, 106, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 133, 134, 136, 138, 142, 143, 145, 146, 148, 152, 153, 155, 156, 158, 159, 164
Offset: 1

Views

Author

John R Phelan, Nov 27 2013

Keywords

Comments

The intention was to generate a sequence of uninteresting numbers. - John R Phelan, Dec 01 2014

Examples

			16 is not in the sequence since it's a perfect power, 2^4.
19 is not in the sequence since it's prime.
18 is not in the sequence since it's 2*3*3, so it's 11-smooth.
22 is not in the sequence since it's a base 10 palindrome.
26 is in the sequence since it's 2*13, so it's not prime, not 11-smooth, not a base-10 palindrome, and not a perfect power.
		

Crossrefs

This sequence is A000027 \ A000040 \ A051038 \ A002113 \ A001597.

Programs

  • Java
    public class Nnn {public static void main(String[] args) {String str = ""; for (int i = 0; i < 1000000 && str.length() < 250; i++) {if (isPrime(i) || isSmooth(11,i) || isPerfectPower(i) || isPalindrome(i)) {} else {str += i + ", ";}} System.out.println(str);} static boolean isPalindrome(int i) {return ((i+"").equals(new StringBuilder(i+"").reverse().toString()));} static boolean isSmooth(int s, int n) {if (n<2) return true; for (int i=2;i<=s;i++) {while (n%i==0) n=n/i;} return n==1;} static boolean isPerfectPower(int n) {for (int i=2;i<=Math.sqrt(n);i++) {int j=i*i; while (j
    				

Formula

A \ B represents set "subtraction", all the elements in A that are not in B.
In other words, start with the Natural numbers (A000027).
Remove the prime numbers (A000040).
Remove the 11-smooth numbers, numbers whose prime divisors are all <= 11 (A051038).
Remove the base-10 palindromes (A002113).
Remove the perfect powers, m^k where m > 0 and k >= 2 (A001597).
And what's left is this sequence.
a(n) ~ n; in particular, a(n) = n + n/log n + o(n/log n). - Charles R Greathouse IV, Nov 27 2013