cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232687 G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals Sum_{k=0..n} C(n,k)^3 = A000172(n) (Franel numbers), for n>=0.

Original entry on oeis.org

1, 1, 3, 7, 20, 66, 244, 980, 4182, 18674, 86353, 410541, 1996214, 9888844, 49760925, 253767097, 1309154825, 6822023553, 35865392690, 190038440422, 1014015337209, 5444707218851, 29401289997403, 159584901816255, 870267544114291, 4766246752344215, 26206635040151511
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2013

Keywords

Comments

Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^n = Sum_{k=0..n} C(n,k)^2 = (2*n)!/n!^2.
a(n+1)/a(n) tends to 6.0295... - Vaclav Kotesovec, Jan 22 2014

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 66*x^5 + 244*x^6 + 980*x^7 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1],0,  0,   0,    0,    0,     0,      0,      0, ...;
A^1: [1, 1], 3,   7,   20,   66,   244,    980,   4182, ...;
A^2: [1, 2,  7], 20,   63,  214,   789,   3124,  13112, ...;
A^3: [1, 3, 12,  40], 138,  492,  1848,   7326,  30531, ...;
A^4: [1, 4, 18,  68,  255], 960,  3716,  14920,  62295, ...;
A^5: [1, 5, 25, 105,  425, 1691], 6785,  27805, 117165, ...;
A^6: [1, 6, 33, 152,  660, 2772, 11560], 48588, 207774, ...;
A^7: [1, 7, 42, 210,  973, 4305, 18676,  80746],351792, ...;
A^8: [1, 8, 52, 280, 1378, 6408, 28916, 128808, 573311], ...; ...
then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals Sum_{k=0..n} C(n,k)^3 = A000172(n):
A000172(0) = 1 = 1;
A000172(1) = 1 + 1 = 2;
A000172(2) = 1 + 2 +  7 = 10;
A000172(3) = 1 + 3 + 12 +  40 = 56;
A000172(4) = 1 + 4 + 18 +  68 + 255 = 346;
A000172(5) = 1 + 5 + 25 + 105 + 425 + 1691 = 2252;
A000172(6) = 1 + 6 + 33 + 152 + 660 + 2772 + 11560 = 15184; ...
		

Crossrefs

Programs

  • Mathematica
    Franel[n_] := Sum[Binomial[n, k]^3, {k, 0, n}];
    a[0] = 1; a[n_] := Module[{B, G}, B = Sum[Franel[k]*x^k, {k, 0, n+1}] + x^3*O[x]^n; G = 1+x*O[x]^n; For[i=1, i <= n, i++, G = 1+Integrate[(B-1)* (G/x)-B*G^2, x]]; SeriesCoefficient[x/InverseSeries[x*G, x], {x, 0, n}]];
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jan 15 2018, translated from 2nd PARI program *)
  • PARI
    /* By Definition (slow): */
    {Franel(n)=sum(k=0,n,binomial(n,k)^3)}
    {a(n)=if(n==0, 1, (Franel(n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Faster, using series reversion: */
    {Franel(n)=sum(k=0,n,binomial(n,k)^3)}
    {a(n)=local(B=sum(k=0, n+1, Franel(k)*x^k)+x^3*O(x^n), G=1+x*O(x^n));
    for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = Sum_{k=0..n} C(n,k)^3 = A000172(n).
Given g.f. A(x), let G(x) = A(x*G(x)) then (G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1) = Sum_{n>=0} A000172(n)*x^n.