A232687 G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals Sum_{k=0..n} C(n,k)^3 = A000172(n) (Franel numbers), for n>=0.
1, 1, 3, 7, 20, 66, 244, 980, 4182, 18674, 86353, 410541, 1996214, 9888844, 49760925, 253767097, 1309154825, 6822023553, 35865392690, 190038440422, 1014015337209, 5444707218851, 29401289997403, 159584901816255, 870267544114291, 4766246752344215, 26206635040151511
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 66*x^5 + 244*x^6 + 980*x^7 +... ILLUSTRATION OF INITIAL TERMS. If we form an array of coefficients of x^k in A(x)^n, n>=0, like so: A^0: [1],0, 0, 0, 0, 0, 0, 0, 0, ...; A^1: [1, 1], 3, 7, 20, 66, 244, 980, 4182, ...; A^2: [1, 2, 7], 20, 63, 214, 789, 3124, 13112, ...; A^3: [1, 3, 12, 40], 138, 492, 1848, 7326, 30531, ...; A^4: [1, 4, 18, 68, 255], 960, 3716, 14920, 62295, ...; A^5: [1, 5, 25, 105, 425, 1691], 6785, 27805, 117165, ...; A^6: [1, 6, 33, 152, 660, 2772, 11560], 48588, 207774, ...; A^7: [1, 7, 42, 210, 973, 4305, 18676, 80746],351792, ...; A^8: [1, 8, 52, 280, 1378, 6408, 28916, 128808, 573311], ...; ... then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals Sum_{k=0..n} C(n,k)^3 = A000172(n): A000172(0) = 1 = 1; A000172(1) = 1 + 1 = 2; A000172(2) = 1 + 2 + 7 = 10; A000172(3) = 1 + 3 + 12 + 40 = 56; A000172(4) = 1 + 4 + 18 + 68 + 255 = 346; A000172(5) = 1 + 5 + 25 + 105 + 425 + 1691 = 2252; A000172(6) = 1 + 6 + 33 + 152 + 660 + 2772 + 11560 = 15184; ...
Links
- Paul D. Hanna and Vaclav Kotesovec, Table of n, a(n) for n = 0..460 (first 200 terms from Paul D. Hanna)
Programs
-
Mathematica
Franel[n_] := Sum[Binomial[n, k]^3, {k, 0, n}]; a[0] = 1; a[n_] := Module[{B, G}, B = Sum[Franel[k]*x^k, {k, 0, n+1}] + x^3*O[x]^n; G = 1+x*O[x]^n; For[i=1, i <= n, i++, G = 1+Integrate[(B-1)* (G/x)-B*G^2, x]]; SeriesCoefficient[x/InverseSeries[x*G, x], {x, 0, n}]]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jan 15 2018, translated from 2nd PARI program *)
-
PARI
/* By Definition (slow): */ {Franel(n)=sum(k=0,n,binomial(n,k)^3)} {a(n)=if(n==0, 1, (Franel(n) - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)} for(n=0, 20, print1(a(n), ", "))
-
PARI
/* Faster, using series reversion: */ {Franel(n)=sum(k=0,n,binomial(n,k)^3)} {a(n)=local(B=sum(k=0, n+1, Franel(k)*x^k)+x^3*O(x^n), G=1+x*O(x^n)); for(i=1, n, G = 1 + intformal( (B-1)*G/x - B*G^2)); polcoeff(x/serreverse(x*G), n)} for(n=0, 30, print1(a(n), ", "))
Comments