A232692 E.g.f. satisfies: A(x) = exp( 1/A(x)^3 * Integral A(x)^8 dx ).
1, 1, 3, 24, 213, 3096, 46071, 967608, 20251809, 555747048, 15004870731, 508165972056, 16810393586733, 677183788645704, 26523956467895103, 1238567261126084856, 56056407696184372281, 2976966230117448265128, 152872356339113679491859, 9098430770913969095416728
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 24*x^3/3! + 213*x^4/4! + 3096*x^5/5! +... Related expansions: log(A(x)) = x + 2*x^2/2! + 17*x^3/3! + 120*x^4/4! + 1905*x^5/5! + 23640*x^6/6! +... Integral A(x)^8 dx = x + 8*x^2/2! + 80*x^3/3! + 1032*x^4/4! + 16320*x^5/5! +... 1/A(x)^3 = 1 - 3*x + 3*x^2/2! - 24*x^3/3! + 117*x^4/4! - 2088*x^5/5! +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Programs
-
Maple
seq(n! * coeff(series((3*LambertW(-1, (25*x-8)/3*exp(-8/3))/(25*x-8))^(1/5), x, n+1), x, n), n=0..20) # Vaclav Kotesovec, Jan 05 2014
-
Mathematica
m = 20; A[] = 1; Do[A[x] = Exp[1/A[x]^3 Integrate[A[x]^8 + O[x]^m, x]] + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] Range[0, m-1]! (* Jean-François Alcover, Nov 03 2019 *)
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=exp(1/A^3*intformal(A^8+x*O(x^n))));n!*polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Formula
E.g.f.: (3*LambertW(-1, (25*x-8)/3*exp(-8/3))/(25*x-8))^(1/5). - Vaclav Kotesovec, Jan 05 2014
Comments