cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232697 Number of partitions of 2n into parts such that the largest multiplicity equals n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 8, 9, 13, 15, 22, 25, 35, 42, 56, 67, 89, 106, 138, 166, 211, 254, 321, 384, 479, 575, 709, 848, 1040, 1239, 1508, 1795, 2168, 2574, 3095, 3661, 4379, 5171, 6154, 7246, 8592, 10088, 11915, 13960, 16425, 19197, 22520, 26253, 30702, 35718
Offset: 0

Views

Author

Alois P. Heinz, Nov 27 2013

Keywords

Examples

			a(1) = 1: [2].
a(2) = 2: [2,2], [2,1,1].
a(3) = 2: [2,2,2], [3,1,1,1].
a(4) = 3: [2,2,2,2], [2,2,1,1,1,1], [4,1,1,1,1].
a(5) = 3: [2,2,2,2,2], [3,2,1,1,1,1,1], [5,1,1,1,1,1].
a(6) = 5: [2,2,2,2,2,2], [2,2,2,1,1,1,1,1,1], [3,3,1,1,1,1,1,1], [4,2,1,1,1,1,1,1], [6,1,1,1,1,1,1].
		

Crossrefs

Partial sums give A133041.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i>n, 0, add(b(n-i*j, i+1, min(k,
           iquo(n-i*j, i+1))), j=0..min(n/i, k))))
        end:
    a:= n-> b(2*n, 1, n)-`if`(n=0, 0, b(2*n, 1, n-1)):
    seq(a(n), n=0..60);
  • Mathematica
    CoefficientList[x/(1-x) + (1-x)/QPochhammer[x] + O[x]^60, x] (* Jean-François Alcover, Dec 18 2016 *)

Formula

G.f.: x/(1-x) + Product_{k>=2} 1/(1-x^k).
a(0) = 1, a(n) = 1 + A002865(n) = 1 + A000041(n)-A000041(n-1) for n>0.
a(n) = A091602(2n,n) = A096144(2n,n).
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)). - Vaclav Kotesovec, Oct 25 2018