A232697 Number of partitions of 2n into parts such that the largest multiplicity equals n.
1, 1, 2, 2, 3, 3, 5, 5, 8, 9, 13, 15, 22, 25, 35, 42, 56, 67, 89, 106, 138, 166, 211, 254, 321, 384, 479, 575, 709, 848, 1040, 1239, 1508, 1795, 2168, 2574, 3095, 3661, 4379, 5171, 6154, 7246, 8592, 10088, 11915, 13960, 16425, 19197, 22520, 26253, 30702, 35718
Offset: 0
Keywords
Examples
a(1) = 1: [2]. a(2) = 2: [2,2], [2,1,1]. a(3) = 2: [2,2,2], [3,1,1,1]. a(4) = 3: [2,2,2,2], [2,2,1,1,1,1], [4,1,1,1,1]. a(5) = 3: [2,2,2,2,2], [3,2,1,1,1,1,1], [5,1,1,1,1,1]. a(6) = 5: [2,2,2,2,2,2], [2,2,2,1,1,1,1,1,1], [3,3,1,1,1,1,1,1], [4,2,1,1,1,1,1,1], [6,1,1,1,1,1,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i>n, 0, add(b(n-i*j, i+1, min(k, iquo(n-i*j, i+1))), j=0..min(n/i, k)))) end: a:= n-> b(2*n, 1, n)-`if`(n=0, 0, b(2*n, 1, n-1)): seq(a(n), n=0..60);
-
Mathematica
CoefficientList[x/(1-x) + (1-x)/QPochhammer[x] + O[x]^60, x] (* Jean-François Alcover, Dec 18 2016 *)