cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A230031 Number A(n,k) of tilings of a k X n rectangle using tetrominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 4, 0, 4, 0, 1, 1, 0, 0, 23, 23, 0, 0, 1, 1, 0, 9, 0, 117, 0, 9, 0, 1, 1, 1, 0, 0, 454, 454, 0, 0, 1, 1, 1, 0, 25, 0, 2003, 0, 2003, 0, 25, 0, 1, 1, 0, 0, 997, 9157, 0, 0, 9157, 997, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 29 2013

Keywords

Examples

			A(4,2) = A(2,4) = 4:
  ._______.  ._______.  ._______.  ._______.
  |   |   |  |_______|  | |___. |  | .___| |
  |___|___|  |_______|  |_____|_|  |_|_____|.
Square array A(n,k) begins:
  1, 1,  1,   1,     1,      1,        1,         1,           1, ...
  1, 0,  0,   0,     1,      0,        0,         0,           1, ...
  1, 0,  1,   0,     4,      0,        9,         0,          25, ...
  1, 0,  0,   0,    23,      0,        0,         0,         997, ...
  1, 1,  4,  23,   117,    454,     2003,      9157,       40899, ...
  1, 0,  0,   0,   454,      0,        0,         0,      800290, ...
  1, 0,  9,   0,  2003,      0,   178939,         0,    22483347, ...
  1, 0,  0,   0,  9157,      0,        0,         0,   657253434, ...
  1, 1, 25, 997, 40899, 800290, 22483347, 657253434, 19077209438, ...
		

Crossrefs

Bisection of main diagonal (even part) gives A263425.

Formula

A(n,k) = 0 <=> n*k mod 4 > 0.

A174248 Number of tilings of a 4 X n rectangle with n tetrominoes of any shape.

Original entry on oeis.org

1, 1, 4, 23, 117, 454, 2003, 9157, 40899, 179399, 796558, 3546996, 15747348, 69834517, 310058192, 1376868145, 6112247118, 27132236455, 120453362938, 534754586459, 2373975139658, 10538953415410, 46786795734201, 207705902269424, 922089495910044, 4093525019450760
Offset: 0

Views

Author

Bob Harris (me13013(AT)gmail.com), Mar 13 2010

Keywords

Crossrefs

Formula

G.f.: -(x^31 +3*x^30 -2*x^29 -7*x^28 -25*x^27 -78*x^26 +23*x^25 +116*x^24 +217*x^23 +604*x^22 -21*x^21 -556*x^20 -649*x^19 -1621*x^18 -175*x^17 +727*x^16 +523*x^15 +1707*x^14 +236*x^13 -470*x^12 -143*x^11 -749*x^10 -133*x^9 +166*x^8 +15*x^7 +126*x^6 +27*x^5 -23*x^4 -x^3 -6*x^2 -x +1) / (x^35 +3*x^34 -3*x^33 -13*x^32 -50*x^31 -123*x^30 +39*x^29 +225*x^28 +659*x^27 +1476*x^26 +60*x^25 -1102*x^24 -2600*x^23 -6047*x^22 -489*x^21 +2786*x^20 +3210*x^19 +9566*x^18 +1102*x^17 -3349*x^16 -1620*x^15 -6885*x^14 -1053*x^13 +1970*x^12 +414*x^11 +2258*x^10 +469*x^9 -548*x^8 -76*x^7 -290*x^6 -77*x^5 +54*x^4 +8*x^3 +8*x^2 +2*x -1). - Alois P. Heinz, Nov 26 2013

Extensions

a(0) inserted, a(11)-a(22) from Alois P. Heinz, May 07 2013
a(23)-a(25) from Alois P. Heinz, Nov 26 2013

A232684 Number of tilings of a 6 X 2n rectangle with 3n tetrominoes of any shape.

Original entry on oeis.org

1, 9, 2003, 178939, 22483347, 2569437089, 304446920314, 35704534261665, 4203065267122878, 494232382069456694, 58138539945306221167, 6838279451118114249916, 804352962762109905924360, 94610929453211737452277488, 11128526714790919845521179844
Offset: 0

Views

Author

Alois P. Heinz, Nov 27 2013

Keywords

Examples

			a(1) = 9:
.___. .___. .___. .___. .___. .___. .___. .___. .___.
|   | | | | |   | |_. | |   | | ._| |   | | ._| |_. |
|___| | | | |___| | | | |___| | | | |___| | | | | | |
|   | | | | | | | | |_| |_. | |_| | | ._| |_| | | |_|
|___| |_|_| | | | |___| | | | |___| | | | | | | | | |
|   | |   | | | | |   | | |_| |   | |_| | | |_| |_| |
|___| |___| |_|_| |___| |___| |___| |___| |___| |___|.
		

Crossrefs

Even bisection of column k=6 of A230031.

A232722 Number of tilings of a 10 X 2n rectangle with 5n tetrominoes of any shape.

Original entry on oeis.org

1, 64, 796558, 2569437089, 14571957312254, 72713560548906621, 384821695402098361211, 2010131712836219582393758, 10562717745357186307808646827, 55429948254413509959115263015669, 291053238120184913211835376456587574, 1528063805458061047577398579978736135916
Offset: 0

Views

Author

Alois P. Heinz, Nov 28 2013

Keywords

Crossrefs

Even bisection of column k=10 of A230031.
Showing 1-4 of 4 results.