cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232752 Permutation of natural numbers: a(0)=0, a(1)=1, a(2n)=A005228(1+(a(n))), a(2n+1)=A030124(a(n)).

Original entry on oeis.org

0, 1, 3, 2, 12, 5, 7, 4, 114, 16, 26, 8, 45, 10, 18, 6, 7562, 127, 191, 21, 462, 32, 56, 11, 1285, 53, 83, 14, 236, 23, 35, 9, 29172079, 7677, 9314, 141, 20528, 208, 312, 27, 115291, 489, 679, 39, 1943, 65, 98, 15, 865555, 1331, 1751, 62, 4111, 94, 150, 19, 30983, 255, 369, 29, 802, 42, 69, 13
Offset: 0

Views

Author

Antti Karttunen, Nov 30 2013

Keywords

Comments

This is one example of the generic class of "entangling of two pairs of complementary sets" permutations of natural numbers. In this case, the Hofstadter's complementary pair A005228 & A030124 is entangled with complementary pair of A005843 & A005408, the even & odd numbers.
Note how, apart from 1, all the other terms of A005228 (1, 3, 7, 12, 18, 26, ...) occur in even positions, and all the terms of A030124 (2, 4, 5, 6, 8, 9, 10, 11, 13, 14, ...) occur in odd positions.
Moreover, at the positions given by two's powers, from 2^1 = 2 onwards, a(2^n) = 3, 12, 114, 7562, 29172079, ... the values are iterates of function b(n) = A005228(n+1) from b(1)=3 onward: b(1)=3, b(b(1))=12, b(b(b(1)))=114, b(b(b(b(1))))=7562, and so on.
In the same way, at the positions given by A000225, from 2^2 - 1 = 3 onwards, the iterates of A030124 appear, A030124(1), A030124(A030124(1)), A030124(A030124(A030124(1))), and so on, as: 2, 4, 6, 9, 13, 17, ... (= A232739).
The permutation A227413 is obtained in analogous way by entangling primes and composites with even and odd numbers.

Crossrefs

Inverse permutation: A232751.
Cf. also the permutation pair A167151 & A225850.

Formula

a(0)=0, a(1)=1, and for even n > 1, a(n) = A005228(1+(a(n/2))), for odd n > 1, a(n) = A030124(a((n-1)/2)).
For all n >=1, a(A000225(n+1)) = A232739(n).