cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232772 Expansion of (psi(x)^2 / (phi(-x) * phi(x^2)))^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 8, 30, 80, 197, 472, 1046, 2160, 4306, 8360, 15712, 28656, 51127, 89552, 153926, 259904, 432336, 709728, 1150142, 1841200, 2915546, 4570904, 7097622, 10921184, 16664073, 25228176, 37907758, 56553936, 83806768, 123405752, 180611558, 262799248, 380275604
Offset: 0

Views

Author

Michael Somos, Nov 30 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x + 30*x^2 + 80*x^3 + 197*x^4 + 472*x^5 + 1046*x^6 + 2160*x^7 + ...
G.f. = q + 8*q^3 + 30*q^5 + 80*q^7 + 197*q^9 + 472*q^11 + 1046*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)]^4 / (16 q^(1/2)) / (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2])^2, {q, 0, n}]
    nmax=60; CoefficientList[Series[Product[((1-x^k)^3 * (1+x^k)^7 * (1+x^(4*k))^2 / (1-x^(4*k))^3)^2,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^7 * eta(x^8 + A)^2 / (eta(x + A)^4 * eta(x^4 + A)^5))^2, n))}

Formula

Expansion of q^(-1/2) * (eta(q^2)^7 * eta(q^8)^2 / (eta(q)^4 * eta(q^4)^5))^2 in powers of q.
Euler transform of period 8 sequence [ 8, -6, 8, 4, 8, -6, 8, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8 g(t) where q = eqp(2 Pi i t) and g() is the g.f. of A233458.
a(n) = A215349(2*n + 1) = A215348(2*n + 1). 2 * a(n) = A212318(2*n + 1) = - A232358(2*n + 1).
a(n) ~ exp(sqrt(2*n)*Pi) / (2^(17/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015