A232818 Triangle of coefficients of polynomials equal permanent of the n X n matrix [1,2,...,n; n*x+1, n*x+2, ..., n*x+n; ...; (n-1)*n*x+1, (n-1)*n*x+2, ...,(n-1)*n*x+n].
1, 6, 4, 216, 198, 36, 23040, 24640, 7200, 576, 5400000, 6375000, 2362500, 328800, 14400, 2351462400, 2982873600, 1285956000, 238533120, 19051200, 518400, 1707698764800, 2291162509440, 1100516981760, 245735819280, 27025656000, 1383117120, 25401600
Offset: 1
Examples
1 6*x + 4 216*x^2 + 198*x + 36 23040*x^3 + 24640*x^2 + 7200*x + 576 ......
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
p[n_,x_]:=(-1)^n Sum[n^k x^k StirlingS1[n,n-k]StirlingS1[n+1,k+1](n-k)!k!,{k,0,n-1}];Flatten[Table[Reverse[CoefficientList[p[n,x],x]],{n,8}]] (* Peter J. C. Moses, Nov 30 2013 *)
-
PARI
P(n)=(-1)^n*sum(k=0,n-1,n^k*x^k*stirling(n,n-k)*stirling(n+1,k+1)*(n-k)!*k!) apply(t->Vec(t),vector(7,n,P(n))) /* M. F. Hasler, Dec 01 2013 */
Formula
Extensions
More terms from Peter J. C. Moses, Nov 30 2013
Comments