cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A232818 Triangle of coefficients of polynomials equal permanent of the n X n matrix [1,2,...,n; n*x+1, n*x+2, ..., n*x+n; ...; (n-1)*n*x+1, (n-1)*n*x+2, ...,(n-1)*n*x+n].

Original entry on oeis.org

1, 6, 4, 216, 198, 36, 23040, 24640, 7200, 576, 5400000, 6375000, 2362500, 328800, 14400, 2351462400, 2982873600, 1285956000, 238533120, 19051200, 518400, 1707698764800, 2291162509440, 1100516981760, 245735819280, 27025656000, 1383117120, 25401600
Offset: 1

Views

Author

Vladimir Shevelev, Nov 30 2013

Keywords

Comments

The degree of n-th polynomial is n-1.
Its leading coefficient is T(n,1) = n^n*(n-1)!^2*(n+1)/2. - M. F. Hasler, Dec 01 2013

Examples

			                                   1
                           6*x +   4
              216*x^2 +  198*x +  36
23040*x^3 + 24640*x^2 + 7200*x + 576
              ......
		

Crossrefs

Programs

  • Mathematica
    p[n_,x_]:=(-1)^n Sum[n^k x^k StirlingS1[n,n-k]StirlingS1[n+1,k+1](n-k)!k!,{k,0,n-1}];Flatten[Table[Reverse[CoefficientList[p[n,x],x]],{n,8}]] (* Peter J. C. Moses, Nov 30 2013 *)
  • PARI
    P(n)=(-1)^n*sum(k=0,n-1,n^k*x^k*stirling(n,n-k)*stirling(n+1,k+1)*(n-k)!*k!)
    apply(t->Vec(t),vector(7,n,P(n))) /* M. F. Hasler, Dec 01 2013 */

Formula

P_n(x) = (-1)^n * Sum_{k=0..n-1} c_k(n) * x^k, where c_k(n)= n^k * Stirling1(n,n-k) * Stirling1(n+1,k+1) * (n-k)! * k!.
P_n(1) = A232773; P_n(0) = n!^2, P_n(1/n) = A204248(n) is permanent of n X n Toeplitz matrix with the first row n,n-1,...,1 (see our comment in A204248).

Extensions

More terms from Peter J. C. Moses, Nov 30 2013