A232962 Prime(m), where m is such that (Sum_{k=1..m} prime(k)^9) / m is an integer.
2, 3974779, 15681179, 250818839, 6682314181, 9143935289, 311484445891, 718930864213, 1004267651657, 7014674460791, 1745134691306711, 2853623691677477, 9950715071009107
Offset: 1
Examples
a(2) = 3974779, because 3974779 is the 281525th prime and the sum of the first 281525 primes^9 = 6520072223138145034616659509499972547782386874741800687550730350 when divided by 281525 equals 23159833844731888942781847116597007540297973092058611801974 which is an integer.
Links
Crossrefs
Programs
-
Mathematica
t = {}; sm = 0; Do[sm = sm + Prime[n]^9; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
-
PARI
is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^9); s==0 \\ Charles R Greathouse IV, Nov 30 2013
-
PARI
S=n=0;forprime(p=1,,(S+=p^9)%n++||print1(p",")) \\ M. F. Hasler, Dec 01 2013
Formula
a(n) = prime(A131263(n)). - M. F. Hasler, Dec 01 2013
Extensions
a(10) from Karl-Heinz Hofmann, Jan 24 2021
a(11) from Paul W. Dyson, Mar 27 2021
a(12) from Bruce Garner, Jan 10 2022
a(13) from Paul W. Dyson, Aug 11 2022
Comments