A232964 Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^9.
1, 2, 4, 6, 10, 12, 14, 82, 93, 476, 712, 856, 935, 11104, 11706, 12234, 19500, 21490, 31864, 171252, 628863, 10189718, 12363588, 13976077, 22321041, 36642393, 47563206, 102352700, 869166585, 1197804361, 1400403575, 2199080290, 5225532140, 39957170689
Offset: 1
Keywords
Examples
a(5)=10 because 1 plus the sum of the first 10 primes^9 is 16762578985600 which is divisible by 10.
Links
- Bruce Garner, Table of n, a(n) for n = 1..48 (first 34 terms from Robert Price)
- OEIS Wiki, Sums of powers of primes divisibility sequences
Crossrefs
Programs
-
Mathematica
p = 2; k = 0; s = 1; lst = {}; While[k < 40000000000, s = s + p^9; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p] (* derived from A128169 *)
Comments